【題目】如圖是一個(gè)矩形桌子,一小球從撞擊到,反射到,又從反射到,從反射回原處,入射角與反射角相等(例如等),已知,,.則小球所走的路徑的長(zhǎng)為__________.
【答案】30
【解析】
求出四邊形SPQR是平行四邊形,推出SR=PQ,PS=QR,證三角形全等得出BR=DP,BQ=DS,根據(jù)相似求出DS,根據(jù)勾股定理求出即RS,RQ,PQ,SP即可.
∵入射角與反射角相等,
∴∠BQR=∠AQP,∠APQ=∠SPD,∠CSR=∠DSP,∠CRS=∠BRQ,
∵四邊形ABCD是矩形,
∴∠A=∠B=∠C=∠D=90,
∴∠DPS+∠DSP=90,∠AQP+∠APQ=90,
∴∠DSP=∠AQP=∠CSR=∠BQR,
∴∠RSP=∠RQP,
同理∠SRQ=∠SPQ,
∴四邊形SPQR是平行四邊形,
∴SR=PQ,PS=QR,
在△DSP和△BQR中
∴△DSP≌△BQR,
∴BR=DP=4,BQ=DS,
∵四邊形ABCD是矩形,
∴AB=CD=9,BC=AD=12,
∴AQ=9DS,AP=124=8,
∵∠SPD=∠APQ,
∴△SDP∽△QAP,
∴
∴,
DS=3,
在Rt△DSP中,由勾股定理得:PS=QR=,
∵
∴PQ=RS=10,
∴QP+PS+SR+QR=2×5+2×10=30,
故答案為:30.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是⊙O直徑BD延長(zhǎng)線上的一點(diǎn),AC是⊙O的切線,C為切點(diǎn).AD=CD,
(1)求證:AC=BC;
(2)若⊙O的半徑為1,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=70°,以B為圓心,任意長(zhǎng)為半徑畫弧交AB,BC于點(diǎn)E,F(xiàn),再分別以點(diǎn)E,F(xiàn)為圓心、以大于EF長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,作射線BP交AC于點(diǎn)D,則∠BDC為( 。┒龋
A. 65 B. 75 C. 80 D. 85
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教材呈現(xiàn):如圖是華師版八年級(jí)上冊(cè)數(shù)學(xué)教材第96頁(yè)的部分內(nèi)容.
(1)定理證明:請(qǐng)根據(jù)教材中的分析,結(jié)合圖①,寫出“角平分線的性質(zhì)定理”完整的證明過程.
(2)定理應(yīng)用:如圖②,在△ABC中,AD、BE分別是∠BAC、∠ABC的角平分線,AD、BE的交點(diǎn)為O,連結(jié)CO交AB于點(diǎn)F,求證:∠ACF=∠BCF.
(3)如圖③,在(2)的條件下,若BE=CE,∠C=30°,△ABD沿AD翻折使點(diǎn)B落在邊AC上的點(diǎn)M處,連結(jié)DM,其中AB=,則S△DCM= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣2ax+c與x軸交于A,B兩點(diǎn)(A在B左側(cè)),與y軸正半軸交于點(diǎn)C,且滿足:(1)一元二次方程ax2﹣2ax+c=0的一個(gè)解是﹣1;(2)拋物線的頂點(diǎn)在直線y=2x上.
問:(1)直接寫出A、B兩點(diǎn)的坐標(biāo).
(2)求此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,拋物線過、兩點(diǎn),交軸于點(diǎn),連接.
(1)求該拋物線的表達(dá)式和對(duì)稱軸;
(2)點(diǎn)是拋物線對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)是以為直角邊的直角三角形時(shí),求所有符合條件的點(diǎn)的坐標(biāo);
(3)如圖②,將拋物線在上方的圖象沿折疊后與軸交與點(diǎn),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家所在居民樓的對(duì)面有一座大廈AB,高為74米,為測(cè)量居民樓與大廈之間的距離,小明從自己家的窗戶C處測(cè)得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.
(1)求∠ACB的度數(shù);
(2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,點(diǎn)為邊上一點(diǎn),且,連接,將沿折疊,點(diǎn)落在點(diǎn)處,連接,當(dāng)為等腰三角形時(shí),的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦期間,小黃自駕游去了離家156千米的黃石礦博園,右圖是小黃離家的距離y(千米)與汽車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象.
(1)求小黃出發(fā)0.5小時(shí)時(shí),離家的距離;
(2)求出AB段的圖象的函數(shù)解析式;
(3)小黃出發(fā)1.5小時(shí)時(shí),離目的地還有多少千米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com