-次函數(shù)y=ax+b的自變量x的取值范圍為-2≤x≤6,相應(yīng)的函數(shù)值y的取值范圍為-11≤y≤9,則此函數(shù)的表達(dá)式為 .
.
解析試題分析:-次函數(shù)y=ax+b的自變量x的取值范圍為-2≤x≤6,相應(yīng)的函數(shù)值y的取值范圍
為-11≤y≤9,所以,當(dāng)-次函數(shù)y隨x的增大而增大時(shí),可得兩點(diǎn)坐標(biāo)為(-2,-11)(6,9)代入-次函數(shù)y=ax+b即可得解析式;當(dāng)-次函數(shù)y隨x的增大而減小時(shí),可得兩點(diǎn)坐標(biāo)為(-2,9)(6,-11)代入-次函數(shù)y=ax+b即可得解析式.
考點(diǎn):1.-次函數(shù)的性質(zhì);2.待定系數(shù)法求解析式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,已知直線l:y=x,過點(diǎn)A(0,1)作y軸的垂線交直線l于點(diǎn)B,過點(diǎn)B作直線l的垂線交y軸于點(diǎn)A1;過點(diǎn)A1作y軸的垂線交直線l于點(diǎn)B1,過點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2;…;按此作法繼續(xù)下去,則點(diǎn)A4的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
已知:一次函數(shù)的圖像平行于直線,且經(jīng)過點(diǎn)(0,-4),那么這個(gè)一次函數(shù)的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,已知函數(shù)y=2x和函數(shù)的圖象交于A、B兩點(diǎn),過點(diǎn)A作AE⊥x軸于點(diǎn)E,若△AOE的面積為4,P是坐標(biāo)平面上的點(diǎn),且以點(diǎn)B、O、E、P為頂點(diǎn)的四邊形是平行四邊形,則滿足條件的P點(diǎn)坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
已知某一次函數(shù)的圖象經(jīng)過點(diǎn)(-1,2),且函數(shù)y的值隨自變量x的增大而減小,請(qǐng)寫出一個(gè)符合上述條件的函數(shù)關(guān)系式:____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
直線與軸負(fù)半軸相交,而且函數(shù)值隨的增大而增大,請(qǐng)寫出一個(gè)符合要求的一次函數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,M為雙曲線上的一點(diǎn),過點(diǎn)M作x軸、y軸的垂線,分別交直線于D、C兩點(diǎn),若直線與y軸交于點(diǎn)A,與x軸相交于點(diǎn)B.則AD•BC的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為a.直線y=bx+c交x軸于E,交y軸于F,且a、b、c分別滿足-(a-4)2≥0,
(1)求直線y=bx+c的解析式并直接寫出正方形OABC的對(duì)角線的交點(diǎn)D的坐標(biāo);
(2)直線y=bx+c沿x軸正方向以每秒移動(dòng)1個(gè)單位長度的速度平移,設(shè)平移的時(shí)間為t秒,問是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由;
點(diǎn)P為正方形OABC的對(duì)角線AC上的動(dòng)點(diǎn)(端點(diǎn)A、C除外),PM⊥PO,交直線AB于M,求的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com