分析 先過E作EF∥BC,交AC于F,構(gòu)造等邊三角形AEF,再根據(jù)SAS判定△BDE≌△FEC,即可得出結(jié)論.
解答 解:DE=EC
理由:如圖,過E作EF∥BC,交AC于F
∵△ABC是等邊三角形
∴AB=AC,∠A=∠ABC=∠ACB=60°
∵EF∥BC
∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°
∴△AEF是等邊三角形
∴AE=AF=EF
∵AE=BD,AB=AC
∴BD=EF,BE=CF
∵∠ABC=∠AFE=60°
∴∠EBD=∠EFC=120°
∴△BDE≌△FEC(SAS)
∴DE=EC
點評 本題考查了等邊三角形的性質(zhì)和全等三角形的判定與性質(zhì),證明角的關(guān)系以及三角形全等是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}{r}^{2}$ | B. | $\frac{4-π}{4}{r}^{2}$ | C. | (4-π)r2 | D. | πr2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 9$\sqrt{3}$m2 | B. | 12$\sqrt{3}$m2 | C. | 15$\sqrt{3}$m2 | D. | 18$\sqrt{3}$m2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 10cm2 | B. | 5$\sqrt{6}$cm2 | C. | 7$\sqrt{3}$cm2 | D. | $\frac{25}{2}$cm2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com