【題目】閱讀下面的證明過程,在每步后的橫線上填寫該步推理的依據(jù). 如圖,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分線,求證:DF∥AB
證明:∵BE是∠ABC的角平分線
∴∠1=∠2
又∵∠E=∠1
∴∠E=∠2
∴AE∥BC
∴∠A+∠ABC=180°
又∵∠3+∠ABC=180°
∴∠A=∠3
∴DF∥AB

【答案】角的平分線的定義;等量代換;內(nèi)錯角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ);同角的補(bǔ)角相等;同位角相等,兩直線平行
【解析】解:證明:∵BE是∠ABC的角平分線 ∴∠1=∠2(角的平分線的定義),
又∵∠E=∠1
∴∠E=∠2 (等量代換)
∴AE∥BC (內(nèi)錯角相等,兩直線平行),
∴∠A+∠ABC=180° (兩直線平行,同旁內(nèi)角互補(bǔ)),
又∵∠3+∠ABC=180°
∴∠A=∠3 (同角的補(bǔ)角相等),
∴DF∥AB(同位角相等,兩直線平行).
故答案是:角的平分線的定義;等量代換;內(nèi)錯角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ);同角的補(bǔ)角相等;同位角相等,兩直線平行.
【考點(diǎn)精析】關(guān)于本題考查的平行線的判定與性質(zhì),需要了解由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了增強(qiáng)學(xué)生體質(zhì),全面實施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對不同口味牛奶的喜好,對全校訂購牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計圖:

(1)本次被調(diào)查的學(xué)生有名;
(2)補(bǔ)全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】遵義市某學(xué)校7位學(xué)生的中考體育測試成績(滿分40分)依次為3740,39,37,40,3840.則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是( 。

A. 40,37B. 4039C. 39,40D. 4038

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖梯形ABCD中,AD∥BC,∠ABC+∠C=90°,AB=6,CD=8,M,N,P分別為AD、BC、BD的中點(diǎn),則MN的長為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠C=90°若BC=2,則AB=4,則∠B____________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EF⊥AB于F,CD⊥AB于D,點(diǎn)G在AC邊上,且∠1=∠2=50°.

(1)求證:EF∥CD;
(2)若∠AGD=65°,試求∠DCG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,O為AC中點(diǎn),過點(diǎn)O的直線分別與AB、CD交于點(diǎn)E、F,連結(jié)BF交AC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°,F(xiàn)O=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個數(shù)是(

A.4個 B.3個 C.2個 D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,G,E分別是正方形ABCD的邊AB,BC的點(diǎn),且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH

其中,正確的結(jié)論有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】|x|=3,|y|=4,且xy,則x+y_____

查看答案和解析>>

同步練習(xí)冊答案