【題目】如圖,在△ABC中,∠B=65°∠C=45°,AD是BC邊上的高,AE是∠BAC的平線,求∠DAE的度數(shù)?
【答案】10 °
【解析】由三角形的內(nèi)角和定理,可求∠BAC=70°,又由AE是∠BAC的平分線,可求∠BAE=35°,再由AD是BC邊上的高,可知∠ADB=90°,可求∠BAD=25°,所以∠DAE=∠BAE-∠BAD=10°.
解:在△ABC中,
∵∠BAC=180°-∠B-∠C=70°,
∵AE是∠BAC的平分線,
∴∠BAE=∠CAE=35°.
又∵AD是BC邊上的高,
∴∠ADB=90°,
∵在△ABD中∠BAD=90°-∠B=25°,
∴∠DAE=∠BAE-∠BAD=10°.
“點睛”本題考查三角形的內(nèi)角和定理及角平分線的性質(zhì),高線的性質(zhì),解答的關(guān)鍵是三角形的內(nèi)角和定理,一定要熟稔于心.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列一元二次方程中沒有實數(shù)根的方程是( 。
A. (x﹣1)2=1 B. x2+2x﹣10=0 C. x2+4=7 D. x2+x+1=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點D,且與邊BC交于點E,則點E的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點A(2,3),在坐標(biāo)軸上找一點P,使得△AOP是等腰三角形,則這樣的點P共有個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD 中,AB=3,BC=4,E,F 是對角線 AC上的兩個動點,分別從 A,C 同時出發(fā), 相向而行,速度均為 1cm/s,運動時間為 t 秒,當(dāng)其中一個動點到達后就停止運動.
(1)若 G,H 分別是 AB,DC 中點,求證:四邊形 EGFH 始終是平行四邊形.
(2)在(1)條件下,當(dāng) t 為何值時,四邊形 EGFH 為矩形.
(3)若 G,H 分別是折線 A﹣B﹣C,C﹣D﹣A 上的動點,與 E,F 相同的速度同時出發(fā),當(dāng) t 為何值時,四邊形 EGFH 為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)一點,將線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1∥l2∥l3,一等腰直角三角形ABC的三個頂點A,B,C分別在l1,l2,l3上,∠ACB=90°,AC交l2于點D,已知l1與l2的距離為1,l2與l3的距離為3,則的值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com