如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
m
x
的圖象交于A(-6,2)、B(4,n)兩點(diǎn),直線(xiàn)AB分別交x軸、y軸于D、C兩點(diǎn).
(1)求反比例函數(shù)y=
m
x
和一次函數(shù)y=kx+b的表達(dá)式;
(2)根據(jù)圖象,直接回答:當(dāng)x取何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值;
(3)連接OA,OB.求△AOB的面積.
分析:(1)把A(-6,2)代入y=
m
x
求出m=-12,即可得出反比例函數(shù)的表達(dá)式,把B(4,n)代入y=-
12
x
求出n,得出B的坐標(biāo),
把A、B的坐標(biāo)代入y=kx+b得出
2=-6k+b
-3=4k+b
,求出k和b即可;
(2)根據(jù)A、B的橫坐標(biāo)結(jié)合圖形求出即可;
(3)求出C的坐標(biāo),根據(jù)三角形的面積公式求出△AOC和△BOC的面積即可.
解答:解:(1)∵把A(-6,2)代入y=
m
x
得:m=-12,
∴反比例函數(shù)的表達(dá)式是y=-
12
x
,
把B(4,n)代入y=-
12
x
得:n=-3,
∴B的坐標(biāo)是(4,-3),
把A、B的坐標(biāo)代入y=kx+b得:
2=-6k+b
-3=4k+b

解得:k=-
1
2
,b=-1,
∴一次函數(shù)y=kx+b的表達(dá)式是y=-
1
2
x-1;

(2)當(dāng)x<-6或x>4時(shí),一次函數(shù)的值大于反比例函數(shù)的值;

(3)
∵把x=0代入y=-
1
2
x-1得:y=-1,
∴OC=1,
∵A(-6,2),B(4,-3),
∴△AOB的面積S=S△AOC+S△BOC=
1
2
×1×6+
1
2
×1×4=5.
點(diǎn)評(píng):本題考查了用待定系數(shù)法求一次函數(shù)和反比例函數(shù)的解析式,三角形的面積,一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題等知識(shí)點(diǎn)的應(yīng)用,用了數(shù)形結(jié)合思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫(xiě)出當(dāng)x>0時(shí),一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點(diǎn)A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過(guò)點(diǎn)A.當(dāng)y<3時(shí),x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過(guò)點(diǎn)
A(m,2)
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時(shí),y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點(diǎn)C,CD⊥x軸于點(diǎn)D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案