【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,AE平分∠BAC交BC于E,CD⊥AE交AE延長線于D,連接BD,若BD=CD,⊙O是以AE為直徑的△ABE的外接圓,與AC交于點(diǎn)H.
(1)求證:BD為⊙O的切線;
(2)設(shè)⊙O的半徑為1,BF平分∠ABC交AE于G,交⊙O于F;
①求的值.
②求BE2的值.
【答案】(1)見解析;(2)①2,②
【解析】
(1)由BD=CD,推出∠DBC=∠DCB,由OB=OE,推出∠OBE=∠OEB,從而證得∠DBC+∠OBE=90°,即可證明結(jié)論;
(2)①先證得∠ABF=∠GAF,從而證得△AFG∽△BFA,再證得△AOF是等腰直角三角形,即可證得結(jié)論;
②利用角平分線的性質(zhì)證得EH=HB,在△ABE中,根據(jù)勾股定理即可證得結(jié)論.
(1)證明:連接OB.
∵BD=CD,
∴∠DBC=∠DCB,
∵CD⊥AE交AE延長線于D,
∴∠DCB+∠DEC=90°,
∵OB=OE,
∴∠OBE=∠OEB,
∵∠DEC=∠BEO,
∴∠DBC+∠OBE=90°,
∴OB⊥BD,
∴BD為⊙O的切線;
(2)①∵BF平分∠ABC,AE為直徑,
∴,∠ABE=90,
∴∠ABF=∠GAF=45,
∵∠AFG=∠BFA,
∴△AFG∽△BFA,
∴,
∴,
連接OF,
∵∠AOF=2∠ABF=90,且OA=OF,
∴△AOF是等腰直角三角形,
∴,
∴=2;
②連接EH.
∵AE為⊙O直徑,
∴∠AHE=90°,
∵等腰Rt△ABC中,∠ABC=90°,AE平分∠A交BC于E,
∴EH=HB,
∵等腰Rt△ABC中,∠ABC=90°,
∴∠ACB=45°,
∴EC=EH=BE,
∴AB=BC=(1+)BE,
又∵AE=2,
∴在△ABE中有:,即,
解得:BE2=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)一種商品的需求量y1(單位:萬件)、供應(yīng)量y2(單位;萬件)與價格x(單位:元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時,即停止供應(yīng).當(dāng)y1=y2時,該商品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價格與穩(wěn)定需求量;
(2)價格在什么范圍時,該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時,政府常通過對供應(yīng)方提供價格補(bǔ)貼來提高供貨價格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬件,政府應(yīng)對每件商品提供多少元補(bǔ)貼才能使供應(yīng)量等于需求量?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系,點(diǎn) O 是原點(diǎn),直線 y x 6分別交 x 軸,y 軸于點(diǎn) B,A,經(jīng)過點(diǎn) A 的直線 y x b 交 x 軸于點(diǎn) C.
(1)求 b 的值 ;
(2)點(diǎn) D 是線段 AB 上的一個動點(diǎn),連接 OD,過點(diǎn) O 作 OE⊥OD 交 AC 于點(diǎn) E,連接DE,將△ODE 沿 DE 折疊得到△FDE,連接 AF.設(shè)點(diǎn) D 的橫坐標(biāo)為 t,AF 的長為 d,當(dāng)t> 3 時,求 d 與 t 之間的函數(shù)關(guān)系式(不要求寫出自變量 t 的取值范圍);
(3)在(2)的條件下,DE 交 OA 于點(diǎn) G,且 tan∠AGD=3.點(diǎn) H 在 x 軸上(點(diǎn) H 在點(diǎn)O 的右側(cè)),連接 DH,EH,FH,當(dāng)∠DHF=∠EHF 時,請直接寫出點(diǎn) H 的坐標(biāo),不需要寫出解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課外閱讀是提高學(xué)生素養(yǎng)的重要途徑.某中學(xué)為了了解全校學(xué)生課外閱讀情況,隨機(jī)抽查了200名學(xué)生,統(tǒng)計他們平均每天課外閱讀時間(小時).根據(jù)每天課外閱讀時間的長短分為A,B,C.D四類,下面是根據(jù)所抽查的人數(shù)繪制的兩幅不完整的統(tǒng)計圖表,請根據(jù)圖中提供的信息,解答下面的問題:
200名學(xué)生平均每天課外閱讀時間統(tǒng)計表
類別 | 時間t(小時) | 人數(shù) |
A | t<0.5 | 40 |
B | 0.5≤t<1 | 80 |
C | 1≤t<1.5 | 60 |
D | t≥1.5 | a |
(1)求表格中a的值,并在圖中補(bǔ)全條形統(tǒng)計圖:
(2)該校現(xiàn)有1800名學(xué)生,請你估計該校共有多少名學(xué)生課外閱讀時間不少于1小時?
(3)請你根據(jù)上述信息對該校提出相應(yīng)的建議
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軍同學(xué)在學(xué)校組織的社會實踐活動中,負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:x),并繪制了樣本的頻數(shù)分布表如下:
月均用水量 | 2≤x<3 | 3≤x<4 | 4≤x<5 | 5≤x<6 | 6≤x<7 | 7≤x<8 | 8≤x<9 |
頻數(shù) | 2 | 12 | ① | 10 | ② | 3 | 2 |
百分比 | 4% | 24% | 30% | 20% | ③ | 6% | 4% |
(1)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表:① ;② ;③
(2)如果家庭月均用水量在5≤x<8范圍內(nèi)為中等用水量家庭,請你通過樣本估計,總體中的中等用水量家庭大約有多少戶?
(3)記月均用水量在2≤x<3范圍內(nèi)的兩戶為a1,a2,在8≤x<9范圍內(nèi)的2戶為b1,b2,現(xiàn)從這4戶家庭中任意抽取2戶,請你通過列表或畫樹狀圖求出抽取的2戶家庭來自不同范圍的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC為銳角,點(diǎn)M為射線AB上一動點(diǎn),連接CM,以點(diǎn)C為直角頂點(diǎn),以CM為直角邊在CM右側(cè)作等腰直角三角形CMN,連接NB.
(1)如圖1,圖2,若△ABC為等腰直角三角形,
問題初現(xiàn):①當(dāng)點(diǎn)M為線段AB上不與點(diǎn)A重合的一個動點(diǎn),則線段BN,AM之間的位置關(guān)系是 ,數(shù)量關(guān)系是 ;
深入探究:②當(dāng)點(diǎn)M在線段AB的延長線上時,判斷線段BN,AM之間的位置關(guān)系和數(shù)量關(guān)系,并說明理由;
(2)如圖3,∠ACB≠90°,若當(dāng)點(diǎn)M為線段AB上不與點(diǎn)A重合的一個動點(diǎn),MP⊥CM交線段BN于點(diǎn)P,且∠CBA=45°,BC=,當(dāng)BM= 時,BP的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】內(nèi)接于為的直徑,,點(diǎn)在上,連接作等邊三角形連接為延長線上一點(diǎn),滿足延長交于點(diǎn),在存在一點(diǎn),使,延長到點(diǎn)使連接.
(1)求證:是的切線;
(2)求證:①;
②;
(3)若,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】桃花中學(xué)計劃購買兩種型號的小黑板,經(jīng)洽談, 購買一塊型小黑板比買一塊型小黑板多元,且購買塊型小黑板和塊型小黑板共需元.
(1)求購買一塊型小黑板和一塊型小黑板各需要多少元?
(2)根據(jù)學(xué)校的實際情況,需購買兩種型號的小黑板共塊,并且購買型小黑板的數(shù)量不少于購買型小黑板的數(shù)量,請問學(xué)校購買這批小黑板最少要多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com