已知:△ABC中,AB=10;

⑴如圖①,若點(diǎn)D、E分別是AC、BC邊的中點(diǎn),求DE的長;

⑵如圖②,若點(diǎn)A1、A2把AC邊三等分,過A1、A2作AB邊的平行線,分別交BC邊于點(diǎn)B1、B2,求A1B1+A2B2的值;

⑶如圖③,若點(diǎn)A1、A2、…、A10把AC邊十一等分,過各點(diǎn)作AB邊的平行線,分別交BC邊于點(diǎn)B1、B2、…、B10。根據(jù)你所發(fā)現(xiàn)的規(guī)律,直接寫出A1B1+A2B2+…+A10B10的結(jié)果.

 

【答案】

(1)∵D、E分別是AC、BC的中點(diǎn)。 ∴DE=

(2)∵A1 B1//A2B2//AB,且A1 A2是AC的三等分點(diǎn)!,。

   ∴

       (3)

【解析】(1)根據(jù)三角形的中位線定理進(jìn)行計(jì)算;

(2)設(shè)A1B1=x,根據(jù)三角形的中位線定理和梯形的中位線定理列方程求解;

(3)根據(jù)(1)和(2)的解答過程,發(fā)現(xiàn)每一條線段的長和總線段之間的關(guān)系:

有n等分點(diǎn)的時(shí)候,則A1B1=10/n,A2B2=20/n ,…An-1Bn-1=10(n-1)/n.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
3
4
,現(xiàn)將△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(45°<α<135°)得到△DCE,設(shè)直線DE與直線AB相交于點(diǎn)P,連接CP.
精英家教網(wǎng)
(1)當(dāng)CD⊥AB時(shí)(如圖1),求證:PC平分∠EPA;
(2)當(dāng)點(diǎn)P在邊AB上時(shí)(如圖2),求證:PE+PB=6;
(3)在△ABC旋轉(zhuǎn)過程中,連接BE,當(dāng)△BCE的面積為
25
4
3
時(shí),求∠BPE的度數(shù)及PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,已知在△ABC中,AD垂直平分BC,AC=EC,點(diǎn)B、D、C、E在同一直線上,則下列結(jié)論:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正確的個(gè)數(shù)有( 。﹤(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,有一個(gè)角為60°,S△ABC=10
3
,周長為20,則三邊長分別為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,點(diǎn)D、E分別是AB、AC上的點(diǎn),以AE為直徑的⊙O與過B點(diǎn)的⊙P精英家教網(wǎng)外切于點(diǎn)D,若AC和BC邊的長是關(guān)于x的方程x2-(AB+4)x+4AB+8=0的兩根,且25BC•sinA=9AB,
(1)求△ABC三邊的長;
(2)求證:BC是⊙P的切線;
(3)若⊙O的半徑為3,求⊙P的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案