已知直線y=kx+b經(jīng)過(guò)點(diǎn)(
5
2
,0),且與坐標(biāo)軸圍成的三角形的面積為
25
4
,求此直線的解析式.
分析:先根據(jù)三角形面積公式求出b=5或-5,然后分類:當(dāng)b=5,則y=kx+5,把(
5
2
,0)代入求出對(duì)應(yīng)k的值;當(dāng)b=-5,則y=kx+5,把(
5
2
,0)代入求出對(duì)應(yīng)k的值.
解答:解:當(dāng)x=0時(shí),y=b,則直線與y軸的交點(diǎn)坐標(biāo)為(0,b),
根據(jù)題意得
1
2
×
5
2
×|b|=
25
4
,解得b=5或-5,
當(dāng)b=5,則y=kx+5,把(
5
2
,0)代入得
5
2
k+5=0,解得k=-2;
當(dāng)b=-5,則y=kx+5,把(
5
2
,0)代入得
5
2
k-5=0,解得k=2;
所以直線的解析式為y=2x-5或y=-2x+5.
點(diǎn)評(píng):本題考查了待定系數(shù)法求一次函數(shù)的解析式:先設(shè)y=kx+b,再將自變量x的值及與它對(duì)應(yīng)的函數(shù)值y的值代入所設(shè)的解析式,得到關(guān)于待定系數(shù)的方程或方程組,然后解方程或方程組,求出待定系數(shù)的值,進(jìn)而寫(xiě)出函數(shù)解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、已知直線y=kx+b經(jīng)過(guò)第一、二、四象限,則直線y=bx+k經(jīng)過(guò)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•義烏市)如圖1,已知直線y=kx與拋物線y=-
4
27
x2
+
22
3
交于點(diǎn)A(3,6).
(1)求直線y=kx的解析式和線段OA的長(zhǎng)度;
(2)點(diǎn)P為拋物線第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線OA于點(diǎn)Q,再過(guò)點(diǎn)Q作直線PM的垂線,交y軸于點(diǎn)N.試探究:線段QM與線段QN的長(zhǎng)度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說(shuō)明理由;
(3)如圖2,若點(diǎn)B為拋物線上對(duì)稱軸右側(cè)的點(diǎn),點(diǎn)E在線段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動(dòng)點(diǎn),且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=kx+1經(jīng)過(guò)點(diǎn)A(2,5),求不等式kx+1>0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=kx+b(k≠0)與直線y=-2x平行,且經(jīng)過(guò)點(diǎn)(1,1),則直線y=kx+b(k≠0)可以看作由直線y=-2x向
平移
3
3
個(gè)單位長(zhǎng)度而得到.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=kx+2-4k(k為實(shí)數(shù)),不論k為何值,直線都經(jīng)過(guò)定點(diǎn)
(4,2)
(4,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案