【題目】如圖,在平行四邊形中,分別是的平分線,若添加以下一個(gè)條件,仍無(wú)法判斷四邊形為菱形,則這個(gè)條件是(

A.B.

C.D.的平分線

【答案】C

【解析】

根據(jù)平行四邊形性質(zhì)推出∠B=∠D,∠DAB=∠DCB,ABCD,ADBC,求出∠BAE=∠DCF,證△ABE≌△CDF,推出AECF,BEDF,求出AFCE,得出四邊形AECF是平行四邊形,再根據(jù)菱形的判定判斷即可.

∵四邊形ABCD是平行四邊形,

∴∠B=∠D,∠DAB=∠DCB,ABCD,ADBC,

AECF分別是∠BAD和∠BCD的平分線,

∴∠DCFDCB,∠BAEBAD

∴∠BAE=∠DCF,

∵在△ABE和△CDF

,

∴△ABE≌△CDF

AECF,BEDF

ADBC,

AFCE,

∴四邊形AECF是平行四邊形,

A、∵四邊形AECF是平行四邊形,AEAF,

∴平行四邊形AECF是菱形,故本選項(xiàng)正確;

B、∵EFAC,四邊形AECF是平行四邊形,

∴平行四邊形AECF是菱形,故本選項(xiàng)正確;

C、根據(jù)和平行四邊形AECF不能推出四邊形是菱形,故本選項(xiàng)錯(cuò)誤;

D、∵四邊形AECF是平行四邊形,

AFBC,

∴∠FAC=∠ACE,

AC平分∠EAF,

∴∠FAC=∠EAC,

∴∠EAC=∠ECA,

AEEC

∵四邊形AECF是平行四邊形,

∴四邊形AECF是菱形,故本選項(xiàng)正確;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)(探索發(fā)現(xiàn))

如圖1,在正方形ABCD中,點(diǎn)MN分別是邊BCCD上的點(diǎn),∠MAN45°,若將DAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°BAG位置,可得MAN≌△MAG,若MCN的周長(zhǎng)為8,則正方形ABCD的邊長(zhǎng)為   

2)(類比延伸)

如圖2,在四邊形ABCD中,ABAD,∠BAD120°,∠B+D180°,點(diǎn)M,N分別在邊BCCD上的點(diǎn),∠MAN60°,請(qǐng)判斷線段BMDN,MN之間的數(shù)量關(guān)系,并說(shuō)明理由.

3)(拓展應(yīng)用)

如圖3,在四邊形ABCD中,ABAD2,∠ADC120°,點(diǎn)MN分別在邊BCCD上,連接AM,MN,AN,ABM是等邊三角形,AMAD于點(diǎn)A,∠DAN15°,請(qǐng)直接寫出CMN的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若一個(gè)三角形一條邊上的高等于這條邊長(zhǎng)的一半,則稱該三角形為半高三角形,這條高稱為半高

1)如圖1,中,,點(diǎn)上,于點(diǎn),于點(diǎn),連接,求證: 半高三角形;

2)如圖2,半高三角形,且邊上的高是半高,點(diǎn)上,于點(diǎn),于點(diǎn),于點(diǎn)

①請(qǐng)?zhí)骄?/span>之間的等量關(guān)系,并說(shuō)明理由;

②若的面積等于16,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GEBC,垂足為點(diǎn)E,GFCD,垂足為點(diǎn)F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說(shuō)明理由:

(3)拓展與運(yùn)用:

正方形CEGF在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CGAD于點(diǎn)H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)與二次函數(shù)的圖象的一個(gè)交點(diǎn)坐標(biāo)為,另一個(gè)交點(diǎn)軸上,點(diǎn)軸右側(cè)拋物線上的一動(dòng)點(diǎn).

1)求此二次函數(shù)的解析式;

2)當(dāng)點(diǎn)位于直線上方的拋物線上時(shí),求面積的最大值;

3)當(dāng)此拋物線在點(diǎn)與點(diǎn)之間的部分(含點(diǎn)和點(diǎn))的最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)之差為9時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo)和的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)A(-4-1)B(a,2)

1)求反比例函數(shù)的解析式和點(diǎn)B的坐標(biāo).

2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于反比例函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對(duì)稱軸為.給出以下結(jié)論:①;②;③;④.其中,正確的結(jié)論有(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫圖題:

1)在如圖所示的方格紙中,經(jīng)過(guò)線段AB外一點(diǎn)C,不用量角器與三角尺,僅用直尺,畫線段AB的垂線CE和平行線CH

2)判斷CECH的位置關(guān)系是   

3)連接ACBC,若小正方形的邊長(zhǎng)為a,求三角形ABC的面積.(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,ABBC5,AC6.△ECD是△ABC沿BC方向平移得到的,連接AEACBE相交于點(diǎn)O

1)判斷四邊形ABCE是怎樣的四邊形,說(shuō)明理由;

2)如圖2,P是線段BC上一動(dòng)點(diǎn)(圖2),(不與點(diǎn)B、C重合),連接PO并延長(zhǎng)交線段AE于點(diǎn)Q,QRBD,垂足為點(diǎn)R

①四邊形PQED的面積是否隨點(diǎn)P的運(yùn)動(dòng)而發(fā)生變化.若變化,請(qǐng)說(shuō)明理由;若不變,求出四邊形PQED的面積;

②當(dāng)線段PB的長(zhǎng)為何值時(shí),△PQR與△BOC相似.

查看答案和解析>>

同步練習(xí)冊(cè)答案