如圖,在等腰梯形ABCD中,AB‖CD,已知,,以所在直線為軸,為坐標(biāo)原點,建立直角坐標(biāo)系,將等腰梯形ABCD繞A點按順時針方向旋轉(zhuǎn)得到等腰梯形OEFG(O、E、F、G分別是A、B、C、D旋轉(zhuǎn)后的對應(yīng)點)(如圖).

⑴在直線DC上是否存在一點,使為等腰三角形,若存在,寫出出點的坐標(biāo),若不存在,請說明理由.

⑵將等腰梯形ABCD沿軸的正半軸平行移動,設(shè)移動后的(0<x≤6),等腰梯形ABCD與等腰梯形OEFG重疊部分的面積為,求之間的函數(shù)關(guān)系式.并求出重疊部分的面積的最大值。

 

【答案】

⑴P(-2,2),P(0,2)⑵①當(dāng)0<x≤2時,y=x; 當(dāng)2≤x≤4時;y=-x+2x-2 ;當(dāng)4≤x≤6時;y=-x+4x-6  ②2

【解析】(1)①EP=FP時,作出EF的垂直平分線,易得點P的坐標(biāo)和D坐標(biāo)重合為(-2,2),

②EP=EF時,與直線CD無交點,舍去這種情況;

EF=FP時,可得P坐標(biāo)為CD與y軸的交點為(0,2)

∴P(-2,2),P(0,2);

(2)①當(dāng)0<x≤2時,y=x;   

當(dāng)2≤x≤4時;y=-x+2x-2

當(dāng)4≤x≤6時;y=-x+4x-6  

②當(dāng)0<x≤2時,y=x 當(dāng)x=2時,y最大=1, 

當(dāng)2≤x≤4時;y=-x+2x-2=-(x-4)+2  當(dāng)x=4時,y最大=2 

當(dāng)4≤x≤6時;y=-x+4x-6=-(x-4)2+2  當(dāng)x=4時,y最大=2 

綜上可知:當(dāng)x=4時,重疊部分的面積y最大=2 

(1)易得D(-2,2),△EFP為等腰三角形,應(yīng)分情況進行探討.EP=FP時,作出EF的垂直平分線,易得點P的坐標(biāo)和D坐標(biāo)重合為(-2,2),EP=EF時,與直線CD無交點,舍去這種情況,EF=FP時,可得P坐標(biāo)為CD與y軸的交點為(0,2);

(2)易得F(2,4),G(2,2),作出等腰梯形的兩條高,得到等腰梯形是上底為2,高為2.當(dāng)移動距離為0-2時,重合部分是三角形,底邊為x,高為0.5x,易得面積;移動距離為2-4時,重合部分是四邊形,可讓梯形面積減去直角三角形面積;移動距離為4-6時,重合部分是三角形,易求得高與底邊.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止).設(shè)P、Q同時出發(fā)并運動了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點E,且EC=3,則梯形ABCD的周長是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點Q位于AB、BC上時,S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進一步探究:對任何一個梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊答案