如圖,拋物線y=ax2+bx+c(a≠0)與x軸、y軸分別相交于A(-1,0)、B(3,0)、C(0,3)三點,其頂點為D.

(1)求:經(jīng)過A、B、C三點的拋物線的解析式;

(2)求四邊形ABDC的面積;

(3)試判斷△BCD與△COA是否相似?若相似寫出證明過程;若不相似,請說明理由.

 

【答案】

(1) y=-x2+2x+3;(2)9;(3)相似,證明見解析.

【解析】

試題分析:(1)已知A、B、C三點坐標(biāo),由待定系數(shù)可求出拋物線解析式;

(2)求出頂點坐標(biāo),作輔助線把四邊形ABDC的面積拆為二個三角形面積加上一梯形的面積,從而求出四邊形ABDC的面積;

(3)判斷△BCD與△COA是否相似,驗證是否滿足相似比例關(guān)系.

試題解析:(1)由題意,得

,

解之,得

,

∴y=-x2+2x+3;

(2)由(1)可知y=-(x-1)2+4,

∴頂點坐標(biāo)為D(1,4),

設(shè)其對稱軸與x軸的交點為E,

∵SAOC=|AO|•|OC|,

=×1×3,

=,

S梯形OEDC=(|DC|+|DE|)×|OE|,

=(3+4)×1,

=,

SDEB=|EB|•|DE|,

=×2×4,

=4,

S四邊形ABDC=SAOC+S梯形OEDC+SDEB,

=++4,

=9;

(3)△DCB與△AOC相似,(9分)

證明:過點D作y軸的垂線,垂足為F,

∵D(1,4),F(xiàn)(0,4),

∴Rt△DFC中,DC=,且∠DCF=45°,

在Rt△BOC中,∠OCB=45°,BC=3,

∴∠AOC=∠DCB=90°,

,

∴△DCB∽△AOC.

考點: 1.二次函數(shù)綜合題;2.相似三角形的判定與性質(zhì).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標(biāo),寫出一條正確的結(jié)論,并通過計算說明;
(3)設(shè)A,B兩點的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點,試問當(dāng)x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網(wǎng)O為坐標(biāo)原點,拋物線上一點C的橫坐標(biāo)為1.
(1)求A,B兩點的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點的一個動圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標(biāo);
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標(biāo)及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網(wǎng)與x軸交于點A、B,點A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時,求點M、N的坐標(biāo);
(3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案