【題目】如圖所示,在△中,、分別是、的中點,,延長到點,使得,連接.
(1)求證:四邊形BCEF是菱形;
(2)若,,求菱形BCEF的面積.
【答案】(1)見解析;(2)18
【解析】
(1)由D、E分別是AB、AC的中點,BE=2DE,易證得EF=BC,EF∥BC,即可判定四邊形BCFE是平行四邊形,又由EF=BE,即可證得四邊形BCFE是菱形;
(2)由∠BCF=120°,易證得△EBC是等邊三角形,又由CE=6,即可求得菱形BCFE的高,繼而求得菱形BCFE的面積.
解:(1)證明:∵D、E分別是AB、AC的中點,
∴DE∥BC且2DE=BC,
又∵BE=2DE,EF=BE,
∴EF=BC,EF∥BC,
∴四邊形BCFE是平行四邊形,
又∵BE=EF,
∴四邊形BCFE是菱形;
(2)解:∵∠BEF=120°,
∴∠EBC=60°,
∴△EBC是等邊三角形,
∴BE=BC=CE=6,
過點E作EG⊥BC于點G,
∴EG=BEsin60°=6×=3,
∴S菱形BCFE=BCEG=6×3=18.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果商計劃購進甲、乙兩種水果進行銷售,經(jīng)了解,甲種水果的進價比乙種水果的進價每千克少4元,且用800元購進甲種水果的數(shù)量與用1000元購進乙種水果的數(shù)量相同.
(1)求甲、乙兩種水果的單價分別是多少元?
(2)該水果商根據(jù)該水果店平常的銷售情況確定,購進兩種水果共200千克,其中甲種水果的數(shù)量不超過乙種水果數(shù)量的3倍,且購買資金不超過3420元,購回后,水果商決定甲種水果的銷售價定為每千克20元,乙種水果的銷售價定為每千克25元,則水果商應(yīng)如何進貨,才能獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板如圖①擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊與含30°角的直角三角板DEF的長直角邊DE重合,DF=8.
(1)若P是BC上的一個動點,當PA=DF時,求此時∠PAB的度數(shù);
(2)將圖①中的等腰直角三角板ABC繞點B順時針旋轉(zhuǎn)30°,點C落在BF上,AC與BD交于點O,連接CD,如圖②.
①探求△CDO的形狀,并說明理由;
②在圖①中,若P是BC的中點,連接FP,將等腰直角三角板ABC繞點B順時針旋轉(zhuǎn),當旋轉(zhuǎn)角α= 時,FP長度最大,最大值為 (直接寫出答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象的對稱軸為直線.
(1)求的值;
(2)將函數(shù)的圖象向右平移2個單位,得到新的函數(shù)圖象.
①直接寫出函數(shù)圖象的表達式;
②設(shè)直線與軸交于點A,與y軸交于點B,當線段AB與圖象只有一個公共點時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點A在y軸上,點C在x軸上,BC⊥x軸,tan∠ACO=.延長AC到點D,過點D作DE⊥x軸于點G,且DG=GE,連接CE,反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B,和CE交于點F,且CF:FE=2:1.若△ABE面積為6,則點D的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生到恩格貝和康鎮(zhèn)進行研學(xué)活動,澄澄老師在網(wǎng)上查得,和分別位于學(xué)校的正北和正東方向,位于南偏東37°方向,校車從出發(fā),沿正北方向前往地,行駛到15千米的處時,導(dǎo)航顯示,在處北偏東45°方向有一服務(wù)區(qū),且位于,兩地中點處.
(1)求,兩地之間的距離;
(2)校車從地勻速行駛1小時40分鐘到達地,若這段路程限速100千米/時,計算校車是否超速?
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別是可活動的菱形和平行四邊形學(xué)具,已知平行四邊形較短的邊與菱形的邊長相等.
(1)在一次數(shù)學(xué)活動中,某小組學(xué)生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經(jīng)過點C,連接DE交AF于點M,觀察發(fā)現(xiàn):點M是DE的中點.
下面是兩位學(xué)生有代表性的證明思路:
思路1:不需作輔助線,直接證三角形全等;
思路2:不證三角形全等,連接BD交AF于點H.…
請參考上面的思路,證明點M是DE的中點(只需用一種方法證明);
(2)如圖2,在(1)的前提下,當∠ABE=135°時,延長AD、EF交于點N,求的值;
(3)在(2)的條件下,若=k(k為大于的常數(shù)),直接用含k的代數(shù)式表示的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=a(x+2)(x﹣6)(a>0)與x軸交于C,D兩點(點C在點D的左邊),與y軸負半軸交于點A.
(1)若△ACD的面積為16.
①求拋物線解析式;
②S為線段OD上一點,過S作x軸的垂線,交拋物線于點P,將線段SC,SP繞點S順時針旋轉(zhuǎn)任意相同的角到SC1,SP1的位置,使點C,P的對應(yīng)點C1,P1都在x軸上方,C1C與P1S交于點M,P1P與x軸交于點N.求的最大值;
(2)如圖2,直線y=x﹣12a與x軸交于點B,點M在拋物線上,且滿足∠MAB=75°的點M有且只有兩個,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com