【題目】如圖,已知線段,點為線段外一點,且.
(1)請用直尺(不帶刻度)和圓規(guī)在線段上找一點,使得的周長為 (作圖不必寫作法,但要保留作圖痕跡);
(2)在(1)的條件下,若,,當是等腰三角形時,求的面積.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C是的一定點,D是弦AB上的一定點,P是弦CB上的一動點.連接DP,將線段PD繞點P順時針旋轉(zhuǎn)得到線段.射線與交于點Q.已知,設(shè)P,C兩點間的距離為xcm,P,D兩點間的距離,P,Q兩點的距離為.
小石根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù),,隨自變量x的變化而變化的規(guī)律進行了探究,下面是小石的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了,,與x的幾組對應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
/cm | 4.29 | 3.33 | 1.65 | 1.22 | 1.50 | 2.24 | |
/cm | 0.88 | 2.84 | 3.57 | 4.04 | 4.17 | 3.20 | 0.98 |
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)據(jù)所對應(yīng)的點,,并畫出函數(shù),的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:連接DQ,當△DPQ為等腰三角形時,PC的長度約為_____cm.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了更好的治理西流湖水質(zhì),保護環(huán)境,市治污公司決定購買 10 臺污水處理設(shè)備.現(xiàn)有 A、B 兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:
A 型 | B 型 | |
價格(萬元/臺) | a | b |
處理污水量(噸/月) | 240 | 200 |
經(jīng)調(diào)查:購買一臺 A 型設(shè)備比購買一臺 B 型設(shè)備多 2 萬元,購買 2 臺 A 型設(shè)備比購買 3 臺 B 型設(shè)備少 6 萬元.
(1)求 a,b 的值;
(2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過 105 萬元,你認為該公司 有哪幾種購買方案;
(3)在(2)問的條件下,若每月要求處理西流湖的污水量不低于 2040 噸,為了節(jié) 約資金,請你為治污公司設(shè)計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】良好的坐姿習慣有利于青少年骨骼生長,有利于身體健康,那么首先要有正確的寫字坐姿,身體上半部坐直,頭部端正、目視前方,兩手放在桌面上,兩腿平放,胸膛挺起,理想狀態(tài)下,如圖①,將圖①中的眼睛記為點,腹部記為點,筆尖記為點,且與桌面沿的交點記為點,已知,點到的距離為23cm, .
(1)求的度數(shù)
(2)老師發(fā)現(xiàn)小亮同學寫字姿勢不正確,眼睛傾斜到圖2的點,點恰好在的垂直平分線上,且,于是要求其糾正為正確的姿勢,求眼睛所在的位置上升的距離(結(jié)果精確到1cm)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】參照學習函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因為,即,所以我們對比函數(shù)來探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
… | 1 | 2 | 4 | -4 | -2 | -1 | … | ||||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
描點:在平面直角坐標系中以自變量的取值為橫坐標,以相應(yīng)的函數(shù)值為縱坐標,描出相應(yīng)的點如圖所示:
(1)請把軸左邊各點和右邊各點分別用一條光滑曲線,順次連接起來;
(2)觀察圖象并分析表格,回答下列問題:
①當時,隨的增大而______;(“增大”或“減小”)
②的圖象是由的圖象向______平移______個單位而得到的;
③圖象關(guān)于點______中心對稱.(填點的坐標)
(3)函數(shù)與直線交于點,,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,E為AB上一點,以AE為直徑作⊙O與BC相切于點D,連接ED并延長交AC的延長線于點F.
(1)求證:AE=AF;
(2)若BC=4,AC=3,求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,CD是⊙O的切線,C為切點,AD⊥CD于點D.
求證:(1)∠AOC=2∠ACD;(2)AC2=AB·AD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若邊長為6的正方形ABCD繞點A順時針旋轉(zhuǎn),得正方形AB′C′D′,記旋轉(zhuǎn)角為a.
(I)如圖1,當a=60°時,求點C經(jīng)過的弧的長度和線段AC掃過的扇形面積;
(Ⅱ)如圖2,當a=45°時,BC與D′C′的交點為E,求線段D′E的長度;
(Ⅲ)如圖3,在旋轉(zhuǎn)過程中,若F為線段CB′的中點,求線段DF長度的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com