如圖,△ABC與△A′B′C′關于直線MN對稱,P為MN上任意一點,下列結論中錯誤的是


  1. A.
    △AA′P是等腰三角形
  2. B.
    MN垂直平分AA′,CC′
  3. C.
    這兩個三角形的面積相等
  4. D.
    直線AB,A′B′的交點不一定在MN上
D
分析:根據(jù)對稱軸的定義,△ABC與△A′B′C′關于直線MN對稱,P為MN上任意一點,可以判斷出圖中各點或線段之間的關系.
解答:∵△ABC與△A′B′C′關于直線MN對稱,P為MN上任意一點,
∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,這兩個三角形的面積相等,A、B、C選項正確;
直線AB,A′B′關于直線MN對稱,因此交點一定在MN上.D錯誤;
故選D.
點評:本題考查軸對稱的性質與運用,對應點的連線與對稱軸的位置關系是互相垂直,對應點所連的線段被對稱軸垂直平分,對稱軸上的任何一點到兩個對應點之間的距離相等,對應的角、線段都相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,△ABC與△ADC關于直線AC對稱,連接BD,若已知四邊形ABCD的面積是125,AC=25,則BD的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,△ABC與△ADE是兩個大小不同的等腰直角三角形,B、C、E在同一條直線上,連接CD.
(1)證明:△ABE≌△ACD;
(2)CD與BE是否垂直?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,△ABC與△DEF均為等邊三角形,O為BC、EF的中點,則AD:BE的值為( 。
A、
3
:1
B、
2
:1
C、5:3
D、不確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC與△ABD都是等邊三角形,點E,F(xiàn)分別在BC,AC上,BE=CF,AE與BF交于點G.
(1)求∠AGB的度數(shù);
(2)連接DG,求證:DG=AG+BG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

29、如圖,△ABC與△A′B′C′關于直線MN對稱,△A′B′C′與△A″B″C″關于直線EF對稱.
(1)畫出△ABC和直線EF;
(2)若直線MN和EF相交于點O,直線MN、EF所夾的銳角設為α,猜想∠BOB″與α之間的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案