【題目】已知:如圖,△ABC中,∠BAC90°,ABAC1,點DBC邊上的一個動點(不與B C點重合),∠ADE45°.

1)求證:△ABD∽△DCE;

2)設(shè)BDxAEy,求y關(guān)于x的函數(shù)關(guān)系式;

3)當△ADE是等腰三角形時,請直接寫出AE的長.

【答案】1)證明見解析;(2y=x2-x+1=x-2+;(3AE的長為2-

【解析】

1)根據(jù)等腰直角三角形的性質(zhì)及三角形內(nèi)角與外角的關(guān)系,易證△ABD∽△DCE
2)由△ABD∽△DCE,對應(yīng)邊成比例及等腰直角三角形的性質(zhì)可求出yx的函數(shù)關(guān)系式;
3)當△ADE是等腰三角形時,因為三角形的腰和底不明確,所以應(yīng)分AD=DEAE=DE,AD=AE三種情況討論求出滿足題意的AE的長即可.

1)證明:
∵∠BAC=90°,AB=AC
∴∠B=C=ADE=45°
∵∠ADC=B+BAD=ADE+CDE
∴∠BAD=CDE
∴△ABD∽△DCE;
2)由(1)得△ABD∽△DCE
=,
∵∠BAC=90°,AB=AC=1,
BC=,CD=-x,EC=1-y,
=
y=x2-x+1=x-2+;
3)當AD=DE時,△ABD≌△CDE
BD=CE,
x=1-y,即 x-x2=x,
x0
∴等式左右兩邊同時除以x得:x=-1
AE=1-x=2-,
AE=DE時,DEAC,此時DBC中點,E也是AC的中點,
所以,AE=;
AD=AE時,∠DAE=90°,DB重合,不合題意;
綜上,在AC上存在點E,使△ADE是等腰三角形,
AE的長為2-

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】梯形ABCD中,ABDCAD=BC,以AD為直徑的⊙OABEO的切線EFBCF,求證:

1EFBC; 2BF·BC=BE·AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用恰當?shù)姆椒ń庀铝蟹匠蹋?/span>

132x+1227

22x23x10

33x122x1

4x2﹣(2x+120

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品的進價為每件40元,如果售價為每件50元,每個月可賣出210件;如果售價超過50元但不超過80元,每件商品的售價每上漲1元,則每個月少賣1件;如果售價超過80元后,若再漲價,則每漲1元每月少賣3件.設(shè)每件商品的售價為x元,每個月的銷售量為y件.
1)求yx的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
2)設(shè)每月的銷售利潤為W,請直接寫出Wx的函數(shù)關(guān)系式;
3)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某人為了測量小山頂上的塔ED的高,他在山下的點A處測得塔尖點D的仰角為45°,再沿AC方向前進60 m到達山腳點B,測得塔尖點D的仰角為60°,塔底點E的仰角為30°,求塔ED的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌的洗衣機在市場上享有美譽,市場標價為元,進價為元,市場調(diào)研發(fā)現(xiàn),若在市場價格的基礎(chǔ)上降價會引起銷售量的增加,當銷售價格為元時,月銷售量為臺;當銷售價格為元時,月銷售量為臺.若月銷售量(臺)與銷售價格(元)滿足一次函數(shù)關(guān)系.

1)求之間的函數(shù)關(guān)系式;

2)公司決定采取降價促銷,迅速占領(lǐng)市場的方案,請根據(jù)以上信息,判斷當銷售價格定為多少元時,公司的月利潤最大,并求出的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AB=5,AC=3,DBC上一動點,連接AD,將ACD沿AD折疊,點C落在點C'處,連接C'DAB于點E,連接BC',當BC'D是直角三角形時,DE的長為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】西寧教育局在局屬各初中學校設(shè)立自主學習日.規(guī)定每周三學校不得以任何形式布置家庭作業(yè),為了解各學校的落實情況,從七、八年級學生中隨機抽取了部分學生的反饋表.針對以下六個項目(每人只能選一項):.課外閱讀;.家務(wù)勞動;.體育鍛煉;.學科學習;.社會實踐;.其他項目進行調(diào)查.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)此次抽查的樣本容量為____________,請補全條形統(tǒng)計圖;

(2)全市約有4萬名在校初中學生,試估計全市學生中選擇體育鍛煉的人數(shù)約有多少人?

(3)七年級(1)班從選擇社會實踐的2名女生和1名男生中選派2名參加校級社會實踐活動.請你用樹狀圖或列表法求出恰好選到1男1女的概率是多少?并列舉出所有等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù):

萊昂哈德歐拉(LeonhardEuler)是瑞士數(shù)學家,在數(shù)學上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面就是歐拉發(fā)現(xiàn)的一個定理:在△ABC中,Rr分別為外接圓和內(nèi)切圓的半徑,OI分別為其中外心和內(nèi)心,則OI2R22Rr

如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙IAB相切于點F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內(nèi)心I(三角形三條角平分線的交點)之間的距離OId,則有d2R22Rr

下面是該定理的證明過程(部分):

延長AI交⊙O于點D,過點I作⊙O的直徑MN,連接DM,AN

∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等).

∴△MDI∽△ANI

IAIDIMIN,①

如圖2,在圖1(隱去MD,AN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BI,IF

DE是⊙O的直徑,所以∠DBE90°

∵⊙IAB相切于點F,所以∠AFI90°,

∴∠DBE=∠IFA

∵∠BAD=∠E(同弧所對的圓周角相等),

∴△AIF∽△EDB,

IABDDEIF

任務(wù):(1)觀察發(fā)現(xiàn):IMR+dIN  (用含R,d的代數(shù)式表示);

2)請判斷BDID的數(shù)量關(guān)系,并說明理由.

3)請觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;

4)應(yīng)用:在RtABC,C90°AC=6cm, BC=8cm,OAB中點,點I是△ABC的內(nèi)心,則OI=  cm

查看答案和解析>>

同步練習冊答案