【題目】拋物線y=ax2+bx+3經(jīng)過點(diǎn)A1,0)和點(diǎn)B5,0).

1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;

2)該拋物線與直線相交于C、D兩點(diǎn),點(diǎn)P是拋物線上的動(dòng)點(diǎn)且位于x軸下方,直線PM∥y軸,分別與x軸和直線CD交于點(diǎn)M、N

連結(jié)PC、PD,如圖1,在點(diǎn)P運(yùn)動(dòng)過程中,△PCD的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,說明理由;

連結(jié)PB,過點(diǎn)CCQ⊥PM,垂足為點(diǎn)Q,如圖2,是否存在點(diǎn)P,使得△CNQ△PBM相似?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

【答案】1;(2;存在,(2)或(,.

【解析】

試題(1)由AB兩點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;

2可設(shè)出P點(diǎn)坐標(biāo),則可表示出M、N的坐標(biāo),聯(lián)立直線與拋物線解析式可求得C、D的坐標(biāo),過CDPN的垂線,可用t表示出△PCD的面積,利用二次函數(shù)的性質(zhì)可求得其最大值;

當(dāng)△CNQ△PBM相似時(shí)有兩種情況,利用P點(diǎn)坐標(biāo),可分別表示出線段的長(zhǎng),可得到關(guān)于P點(diǎn)坐標(biāo)的方程,可求得P點(diǎn)坐標(biāo).

試題解析:(1拋物線y=ax2+bx+3經(jīng)過點(diǎn)A1,0)和點(diǎn)B5,0),

,解得

該拋物線對(duì)應(yīng)的函數(shù)解析式為;

2①∵點(diǎn)P是拋物線上的動(dòng)點(diǎn)且位于x軸下方,

可設(shè)Pt)(1t5),

直線PM∥y軸,分別與x軸和直線CD交于點(diǎn)M、N,

∴Mt0),Nt),

∴PN=.

聯(lián)立直線CD與拋物線解析式可得,解得,

∴C0,3),D7,),

分別過C、D作直線PN的直線,垂足分別為E、F,如圖1,

CE=t,DF=7﹣t,

∴SPCD=SPCN+SPDN=PN·CE+PNDF=PN=

當(dāng)t=時(shí),△PCD的面積有最大值,最大值為;

存在.

∵∠CQN=∠PMB=90°,

當(dāng)△CNQ△PBM相似時(shí),有兩種情況,

∵CQ⊥PM,垂足為Q

∴Qt,3),且C0,3),Nt,),

∴CQ=t,NQ=﹣3=

,

∵Pt,),Mt,0),B5,0),

∴BM=5﹣tPM=0﹣=,

當(dāng)時(shí),則PM=BM,即,解得t=2t=5(舍去),此時(shí)P2);

當(dāng)時(shí),則BM=PM,即5﹣t=),解得t=t=5(舍去),此時(shí)P,);

綜上可知存在滿足條件的點(diǎn)P,其坐標(biāo)為P2,)或().

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+cx軸交于A(﹣1,0)B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn).

(1)求拋物線的解析式和直線AC的解析式;

(2)請(qǐng)?jiān)?/span>y軸上找一點(diǎn)M,使BDM的周長(zhǎng)最小,求出點(diǎn)M的坐標(biāo);

(3)試探究:在拋物線上是否存在點(diǎn)P,使以點(diǎn)A,P,C為頂點(diǎn),AC為直角邊的三角形是直角三角形?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),連接AF,BE相交于點(diǎn)P,且AE=CF.

(1)求證:AF=BE,并求∠FPB的度數(shù);

(2)AE=2,試求AP·AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點(diǎn),FAM上一點(diǎn),EFAM,垂足為F,交AD延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N

1)求證:△ABM∽△EFA;

2)若AB12,BM6,FAM的中點(diǎn),求DN的長(zhǎng);

3)若AB12DE1,BM5,求DN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖點(diǎn)O是等邊ABC內(nèi)一點(diǎn),AOB=110°,BOCBOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°ADC,連接OD

1)求證COD是等邊三角形;

2)當(dāng)α=150°時(shí)試判斷AOD的形狀,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格中的每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)間的連線為邊的三角形稱為格點(diǎn)三角形,圖中的ABC是格點(diǎn)三角形.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(-1,-1).

(1)ABC向左平移8格后得到A1B1C1,畫出A1B1C1的圖形并寫出點(diǎn)B1的坐標(biāo);

(2)ABC繞點(diǎn)C按順時(shí)針旋轉(zhuǎn)90°后得A2B2C2,畫出A2B2C2的圖形并寫出B2的坐標(biāo);

(3)ABC以點(diǎn)A為位似中心放大,使放大前后對(duì)應(yīng)邊的比為12,畫出AB3C3的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(﹣1,1),點(diǎn)Bx軸正半軸上,點(diǎn)D在第三象限的雙曲線y上,過點(diǎn)CCEx軸交雙曲線于點(diǎn)E,則CE的長(zhǎng)為(  )

A. 2.5B. 3C. 3.5D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠ABC=90°,AB=CD,AE=BD,若 DF·CF= ,則 SDCF=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,過點(diǎn)DDEAB于點(diǎn)E,作DEBC于點(diǎn)F,連接EF,求證:

1ADE≌△CDF;

2)若∠A60°AD4,求EDF的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案