【題目】如圖,正方形ABCD中,M為BC上一點(diǎn),F是AM上一點(diǎn),EF⊥AM,垂足為F,交AD延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=6,F為AM的中點(diǎn),求DN的長(zhǎng);
(3)若AB=12,DE=1,BM=5,求DN的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)DN=;(3)DN=.
【解析】
(1)由正方形的性質(zhì)得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結(jié)論;
(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DN的長(zhǎng);
(3)根據(jù)余角的性質(zhì)得到∠BAM=∠E,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
(1)證明:∵四邊形ABCD是正方形,
∴AB=AD,∠B=90°,AD∥BC,
∴∠AMB=∠EAF,
又∵EF⊥AM,
∴∠AFE=90°,
∴∠B=∠AFE,
∴△ABM∽△EFA;
(2)解:∵∠B=90°,AB=12,BM=6,
∴AM==6,AD=12,
∵F是AM的中點(diǎn),
∴AF=AM=3,
∵△ABM∽△EFA,
∴=,
即=,
∴AE=15,
∴DE=AE﹣AD=3,
∵∠EDN=∠EFA=90°,∠E=∠E,
∴△AEF∽△NED,
∴=,
∵EF==6,
∴DN=;
(3)解:∵∠B=∠AFE=∠BAD=90°,
∴∠BAM+∠EAF=∠EAF+∠E=90°,
∴∠BAM=∠E,
∴△ABM∽△EDN,
∴,
即,
∴DN=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測(cè)得A,C之間的距離為6cm,點(diǎn)B,D之間的距離為8cm,則線段AB的長(zhǎng)為( 。
A.5 cmB.4.8 cmC.4.6 cmD.4 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若=﹣1,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=10cm,BC=16cm,DE=4cm.動(dòng)線段DE(端點(diǎn)D從點(diǎn)B開(kāi)始)沿BC邊以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)端點(diǎn)E到達(dá)點(diǎn)C時(shí)運(yùn)動(dòng)停止.過(guò)點(diǎn)E作EF∥AC交AB于點(diǎn)F(當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),EF與CA重合),連接DF,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t≥0).
(1)直接寫(xiě)出用含t的代數(shù)式表示線段BE、EF的長(zhǎng);
(2)在這個(gè)運(yùn)動(dòng)過(guò)程中,△DEF能否為等腰三角形?若能,請(qǐng)求出t的值;若不能,請(qǐng)說(shuō)明理由;
(3)設(shè)M、N分別是DF、EF的中點(diǎn),求整個(gè)運(yùn)動(dòng)過(guò)程中,MN所掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在邊BC上以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)C向點(diǎn)B運(yùn)動(dòng).
(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?
(2)在線段PB上是否存在一點(diǎn)Q,使得ODQP為菱形?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)△OPD為等腰三角形時(shí),寫(xiě)出點(diǎn)P的坐標(biāo)(不必寫(xiě)過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點(diǎn)B在y軸上,OA=1.將菱形OABC沿x軸的正方向無(wú)滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點(diǎn)B的落點(diǎn)依次為B1,B2,B3,…,則B2017的坐標(biāo)為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(5,0).
(1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;
(2)該拋物線與直線相交于C、D兩點(diǎn),點(diǎn)P是拋物線上的動(dòng)點(diǎn)且位于x軸下方,直線PM∥y軸,分別與x軸和直線CD交于點(diǎn)M、N.
①連結(jié)PC、PD,如圖1,在點(diǎn)P運(yùn)動(dòng)過(guò)程中,△PCD的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,說(shuō)明理由;
②連結(jié)PB,過(guò)點(diǎn)C作CQ⊥PM,垂足為點(diǎn)Q,如圖2,是否存在點(diǎn)P,使得△CNQ與△PBM相似?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠ABC=90°,BA=BC.將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AD,E是邊BC上的一動(dòng)點(diǎn),連結(jié)DE交AC于點(diǎn)F,連結(jié)BF.
(1)求證:FB=FD;
(2)如圖2,連結(jié)CD,點(diǎn)H在線段BE上(不含端點(diǎn)),且BH=CE,連結(jié)AH交BF于點(diǎn)N.
①判斷AH與BF的位置關(guān)系,并證明你的結(jié)論;
②連接CN.若AB=2,請(qǐng)直接寫(xiě)出線段CN長(zhǎng)度的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列事件中,是必然事件的是( )
A. 擲一次骰子,向上一面的點(diǎn)數(shù)是6B. 經(jīng)過(guò)有交通信號(hào)燈的路口,遇到紅燈
C. 任意畫(huà)一個(gè)三角形,其內(nèi)角和是D. 射擊運(yùn)動(dòng)員射擊一次,命中靶心
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com