【題目】如圖,作出邊長為1的菱形ABCD,∠DAB=60°,連接對角線AC,以AC為邊作第二個菱形ACC1D1,使∠D1AC=60°,連接AC1,再以AC1為邊作第三個菱形AC1C2D2,使∠D2AC1=60°;…按此規(guī)律所作的第2017個菱形的邊長為_____

【答案】

【解析】

根據(jù)已知和菱形的性質(zhì)可分別求得AC,AC1,AC2的長,從而可發(fā)現(xiàn)規(guī)律根據(jù)規(guī)律不難求得第n個菱形的邊長

連接DBAC交于點M,

∵四邊形ABCD是菱形,

∴AD=AB.AC⊥DB,

∵∠DAB=60°,

∴△ADB是等邊三角形

∴DB=AD=1,

∴BM=

∴AM= =

∴AC=

同理可得 AC1 AC= , AC2 AC1=3= ,

按此規(guī)律所作的第n個菱形的邊長為

當(dāng)n=2017時,第2017個菱形的邊長為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,AB=,點D是邊BC上一點,點H是線段AD上一點,連接BH、CH.當(dāng)∠BHD=60°,AHC=90°時,DH=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是邊BC上的中線,∠BAD=CAD,CEAD,CEBA的延長線于點E,BC=8,AD=3.

(1)求CE的長;

(2)求證:ABC為等腰三角形.

(3)求ABC的外接圓圓心P與內(nèi)切圓圓心Q之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家獨家銷售具有地方特色的某種商品,每件進價為40元.經(jīng)過市場調(diào)查,一周的銷售量y件與銷售單價xx≥50)/件的關(guān)系如下表

(1)直接寫出yx的函數(shù)關(guān)系式

(2)設(shè)一周的銷售利潤為S,請求出Sx的函數(shù)關(guān)系式并確定當(dāng)銷售單價在什么范圍內(nèi)變化時,一周的銷售利潤隨著銷售單價的增大而增大?

(3)雅安地震牽動億萬人民的心,商家決定將商品一周的銷售利潤全部寄往災(zāi)區(qū),在商家購進該商品的貨款不超過10000元情況下請你求出該商家最大捐款數(shù)額是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形、乙轉(zhuǎn)盤被分成2個面積相等的扇形.小夏和小秋利用它們來做決定獲勝與否的游戲.規(guī)定小夏轉(zhuǎn)甲盤一次、小秋轉(zhuǎn)乙盤一次為一次游戲(當(dāng)指針指在邊界線上時視為無效,重轉(zhuǎn)).

(1)小夏說:“如果兩個指針?biāo)竻^(qū)域內(nèi)的數(shù)之和為6或7,則我獲勝;否則你獲勝”.按小夏設(shè)計的規(guī)則,請你寫出兩人獲勝的可能性分別是多少?

(2)請你對小夏和小秋玩的這種游戲設(shè)計一種公平的游戲規(guī)則,并用一種合適的方法(例如:樹狀圖,列表)說明其公平性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,邊AE上有一動點P(不與A,E重合)自A點沿AE方向向E點勻速運動,運動的速度為每秒1個單位長度,設(shè)運動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE的平行線交DE于點N.

(1)直接寫出D,E兩點的坐標(biāo),D(   ),E(   ),直接判斷四邊形NMPE的形狀為   

(2)當(dāng)t為何值時,四邊形NMPE是正方形?

(3)當(dāng)t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應(yīng)的時刻點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,用直尺和圓規(guī)作BAD的平分線AG交BC于點E,若BF=12,AB=10,則AE的長為( )

A.16 B.15 C.14 D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:

數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點,請在圓上找出滿足條件的點,使智慧三角形(畫出點的位置,保留作圖痕跡);

如圖,在正方形中,的中點,上一點,且,試判斷是否為智慧三角形,并說明理由;

運用:

如圖,在平面直角坐標(biāo)系中,的半徑為,點是直線上的一點,若在上存在一點,使得智慧三角形,當(dāng)其面積取得最小值時,直接寫出此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

材料1、若一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,則x1+x2=,x1x2=

材料2、已知實數(shù)m、n滿足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.

解:由題知m、n是方程x2﹣x﹣1=0的兩個不相等的實數(shù)根,根據(jù)材料1

m+n=1,mn=﹣1

根據(jù)上述材料解決下面問題;

(1)一元二次方程2x2+3x﹣1=0的兩根為x1、x2,則x1+x2=   ,x1x2=   

(2)已知實數(shù)m、n滿足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.

(3)已知實數(shù)p、q滿足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.

查看答案和解析>>

同步練習(xí)冊答案