分析 (1)根據(jù)全等三角形的判定求出△ADO≌△CEO,求出OD=OE,根據(jù)平行四邊形的判定得出四邊形ADCE是平行四邊形,再根據(jù)矩形的判定得出即可;
(2)根據(jù)面積公式和等底等高的三角形的面積相等得出即可.
解答 (1)證明:∵CE∥DA,
∴∠OCE=∠OAD,
∵O為AC的中點,
∴OA=OC,
在△ADO和△CEO中
$\left\{\begin{array}{l}{∠OAD=∠OCE}\\{OA=OC}\\{∠DOA=∠EOC}\end{array}\right.$
∴△ADO≌△CEO(ASA),
∴OD=OE,
∵OA=OC,
∴四邊形ADCE是平行四邊形,
∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠ADC=90°,
∴平行四邊形ADCE是矩形;
(2)解:圖2中與四邊形ABDF面積相等的所有的三角形和四邊形有△ABC,△BCE,矩形ADCE,四邊形ABDE,
理由是:∵△ACD和△AFD的面積相等(等底等高的三角形面積相等),
∴S△ADC=S△ADF,
∴S△ADC+S△ADB=S△ADF+S△ADB,
∴S四邊形ABDF=S△ABC;
∵S△BCE=S△ABC,
∴S四邊形ABDF=S△BCE;
∵S△ADB=S△ADC,S△ADF=S△AEC,
∴S四邊形ABDF=S矩形ADCE;
∵S△ADF=S△ADE,
∴都加上△ADB的面積得:S四邊形ABDF=S四邊形ABDE.
點評 本題考查了矩形的判定,平行四邊形的判定,全等三角形的性質(zhì)和判定的應(yīng)用,能正確根據(jù)定理進行推理是解此題的關(guān)鍵,注意:有一個角是直角的平行四邊形是矩形.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 40° | B. | 140° | C. | 40°和50° | D. | 40°或140° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com