【題目】數(shù)軸是初中數(shù)學(xué)教材中數(shù)形結(jié)合的第一個(gè)實(shí)例,它包括原點(diǎn),正方向和長(zhǎng)度單位三要素,每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示.
數(shù)軸上某一個(gè)點(diǎn)所對(duì)應(yīng)的數(shù)為,另一個(gè)點(diǎn)對(duì)應(yīng)的數(shù)為,則這兩點(diǎn)之間的距離為________;
數(shù)軸上的數(shù)對(duì)應(yīng)的點(diǎn)為,點(diǎn)位于點(diǎn)的右邊,距點(diǎn)個(gè)長(zhǎng)度單位,為線(xiàn)段上的一點(diǎn),,電子螞蟻、分別從、同時(shí)出發(fā),相向而行,的速度為個(gè)長(zhǎng)度單位/秒,的速度為個(gè)長(zhǎng)度單位/秒.
①當(dāng)、距點(diǎn)距離相同時(shí),求運(yùn)動(dòng)時(shí)間;
②若電子螞蟻通過(guò)點(diǎn)秒后與電子螞蟻相遇,求的值.
【答案】(1)10; (2) ①m或m;②30.
【解析】
(1)根據(jù)兩點(diǎn)間的距離公式求解即可;(2)①根據(jù)P、Q距C點(diǎn)距離相同,列出方程可求時(shí)間t;②根據(jù)電子螞蟻Q通過(guò)C點(diǎn)1秒后與電子螞蟻P相遇,由時(shí)間的等量關(guān)系列出方程可求m的值.
:(1)2-(-8)=10.
故這兩點(diǎn)之間的距離為10.
故答案為:10;
(2)①依題意有:m-3t=m-2t,
解得t=m;
或3t+2t=m,
解得t=m.
故運(yùn)動(dòng)時(shí)間t為m或m.
②依題意有:,
解得m=30.
故m的值為30.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在求1+2+22+23+24+25+26的值時(shí),小明發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的2倍,于是他設(shè):S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于⊙C的限距點(diǎn)的定義如下:若P′為直線(xiàn)PC與⊙C的一個(gè)交點(diǎn),滿(mǎn)足r≤PP′≤2r,則稱(chēng)P′為點(diǎn)P關(guān)于⊙C的限距點(diǎn),如圖為點(diǎn)P及其關(guān)于⊙C的限距點(diǎn)P′的示意圖.
(1)當(dāng)⊙O的半徑為1時(shí).
①分別判斷點(diǎn)M(3,4),N( ,0),T(1, )關(guān)于⊙O的限距點(diǎn)是否存在?若存在,求其坐標(biāo);
②點(diǎn)D的坐標(biāo)為(2,0),DE,DF分別切⊙O于點(diǎn)E,點(diǎn)F,點(diǎn)P在△DEF的邊上.若點(diǎn)P關(guān)于⊙O的限距點(diǎn)P′存在,求點(diǎn)P′的橫坐標(biāo)的取值范圍;
(2)保持(1)中D,E,F(xiàn)三點(diǎn)不變,點(diǎn)P在△DEF的邊上沿E→F→D→E的方向運(yùn)動(dòng),⊙C的圓心C的坐標(biāo)為(1,0),半徑為r,請(qǐng)從下面兩個(gè)問(wèn)題中任選一個(gè)作答.
問(wèn)題1 | 問(wèn)題2 |
若點(diǎn)P關(guān)于⊙C的限距點(diǎn)P′存在,且P′隨點(diǎn)P的運(yùn)動(dòng)所形成的路徑長(zhǎng)為πr,則r的最小值為 | 若點(diǎn)P關(guān)于⊙C的限距點(diǎn)P′不存在,則r的取值范圍為 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,BE平分∠ABC交AD于點(diǎn)E,F(xiàn)為BE上一點(diǎn),連接DF,過(guò)F作FG⊥DF交BC于點(diǎn)G,連接BD交FG于點(diǎn)H,若FD=FG,BF=3 ,BG=4,則GH的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線(xiàn)AB分別與x軸、y軸交于點(diǎn)B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點(diǎn)E,若tan∠ABO= ,OB=4,OE=2,點(diǎn)D的坐標(biāo)為(6,m).
(1)求直線(xiàn)AB和反比例函數(shù)的解析式;
(2)求△OCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著手機(jī)的普及,微信一種聊天軟件的興起,許多人抓住這種機(jī)會(huì),做起了“微商”,很多農(nóng)產(chǎn)品也改變了原來(lái)的銷(xiāo)售模式,實(shí)行了網(wǎng)上銷(xiāo)售,這不剛大學(xué)畢業(yè)的小明把自家的冬棗產(chǎn)品也放到了網(wǎng)上,他原計(jì)劃每天賣(mài)100斤冬棗,但由于種種原因,實(shí)際每天的銷(xiāo)售量與計(jì)劃量相比有出入,下表是某周的銷(xiāo)售情況超額記為正,不足記為負(fù)單位:斤;
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計(jì)劃量的差值 |
|
|
|
|
|
|
|
(1)根據(jù)記錄的數(shù)據(jù)可知前三天共賣(mài)出 ______ 斤;
(2)根據(jù)記錄的數(shù)據(jù)可知銷(xiāo)售量最多的一天比銷(xiāo)售量最少的一天多銷(xiāo)售 ______ 斤;
(3)本周實(shí)際銷(xiāo)售總量達(dá)到了計(jì)劃數(shù)量沒(méi)有?
(4)若冬季每斤按8元出售,每斤冬棗的運(yùn)費(fèi)平均3元,那么小明本周一共收入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板按如圖所示的方式擺放,其中△ABC為含有45°角的三角板,直線(xiàn)AD是等腰直角三角板的對(duì)稱(chēng)軸,且斜邊上的點(diǎn)D為另一塊三角板DMN的直角頂點(diǎn),DM、DN分別交AB、AC于點(diǎn)E、F.則下列四個(gè)結(jié)論:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四邊形AEDF=BC2.其中正確結(jié)論是_____(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程中變形正確的是( )
①3x+6=0變形為x+2=0;
②2x+8=5-3x變形為x=3;
③+=4去分母,得3x+2x=24;
④(x+2)-2(x-1)=0去括號(hào),得x+2-2x-2=0.
A. ①③ B. ①②③ C. ①④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、C、N三點(diǎn)在同一直線(xiàn)上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△MNC≌△ABC,則∠BCM:∠BCN=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com