【題目】如圖所示,在△ABC中,C90,點D是AB邊上一點,以BD為直徑的⊙O與邊AC相切于點E,與邊BC交于點F,過點E作EHAB于點H,連結BE.
(1)求證:BCBH;
(2)若AB5,AC4,求CE的長.
【答案】(1)見解析 (2)
【解析】
(1)連接OE,如圖,根據(jù)切線的性質(zhì)得到OE⊥AC,則可證明∠1=∠3,然后證明Rt△BEH≌Rt△BEC得到結論;
(2)利用勾股定理計算出BC=3,求解,設CEx,則EHx,AE4x.在Rt△AEH中,由勾股定理可得答案.
(1)證明:如圖,連結OE.
∵OEOB,∴12
∵AC與⊙O相切,
∴ACOE,
∵BCAC,∴OE//BC,
∴23,
C90,EHAB,
∴△BCE≌△BHE(AAS)
∴BCBH;
(2)解:設CEx,
△BCE≌△BHE,
則EHx,AE4x.在Rt△ABC中,由勾股定理得:
由(1)可知:BHBC3,
∴AHABBH532.
在Rt△AEH中,由勾股定理得:,
,解之得:.
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=10,BC=15,tan∠A=點P為AD邊上任意一點,連結PB,將PB繞點P逆時針旋轉90°得到線段PQ.若點Q恰好落在平行四邊形ABCD的邊所在的直線上,則PB旋轉到PQ所掃過的面積____(結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】蘇州市某初中學校對本校初中學生完成家庭作業(yè)的時間做了總量控制,規(guī)定每天完成家庭作業(yè)時間不超過1.5小時.該校數(shù)學課外興趣小組對本校初中學生回家完成作業(yè)的時間做了一次隨機抽樣調(diào)查,并繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.
時間(小時) | 頻數(shù)(人數(shù)) | 頻率 |
0≤t<0.5 | 4 | 0.1 |
0.5≤t<1 | a | 0.3 |
1≤t<1.5 | 10 | 0.25 |
1.5≤t<2 | 8 | b |
2≤t<2.5 | 6 | 0.15 |
合計 | 1 |
(1)a= ,b= ;
(2)補全頻數(shù)分布直方圖;
(3)請估計該校1 500名初中學生中,約有多少學生在1.5小時以內(nèi)完成家庭作業(yè).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解市民對“垃圾分類知識”的知曉程度,某數(shù)學學習興趣小組對市民進行隨機抽樣的問卷調(diào)查,調(diào)查結果分為“.非常了解”、“.了解”、“.基本了解”、“.不太了解”四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據(jù)圖中的信息解答下列問題.
(1)這次調(diào)查的市民人數(shù)為 人,圖2中, ;
(2)補全圖1中的條形統(tǒng)計圖;
(3)在圖2中的扇形統(tǒng)計圖中,求“.基本了解”所在扇形的圓心角度數(shù);
(4)據(jù)統(tǒng)計,2018年該市約有市民500萬人,那么根據(jù)抽樣調(diào)查的結果,可估計對“垃圾分類知識”的知曉程度為“.不太了解”的市民約有多少萬人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的頂點,B分別在y軸、x軸上,OA=2,OB=1,斜邊AC∥x軸.若反比例函數(shù)(k>0,x>0)的圖象經(jīng)過AC的中點D,則k的值為( )
A.8B.5C.6D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點E、F,若CE=2,連接CF.以下結論:①∠BAF=∠BCF; ②點E到AB的距離是2; ③S△CDF:S△BEF=9:4; ④tan∠DCF=3/7. 其中正確的有()
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于的一次函數(shù)和反比例函數(shù)的圖像都經(jīng)過點.
求:(1)一次函數(shù)和反比例函數(shù)的解析式;
(2)若一次函數(shù)和反比例函數(shù)圖像的另一個交點的坐標為,請結合圖像直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,⊙O與Rt△ACD的兩直角邊分別交于點E、F,點F是弧BE的中點,∠C=90°,連接AF.
(1)求證:直線DF是⊙O的切線.
(2)若BD=1,OB=2,求tan∠AFC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A1的坐標為(2,4),以點O為圓心,以OA1長為半徑畫弧,交直線y=x于點B1.過B1點作B1A2∥y軸,交直線y=2x于點A2,以O為圓心,以OA2長為半徑畫弧,交直線y=x于點B2;過點B2作B2A3∥y軸,交直線y=2x于點A3,以點O為圓心,以OA3長為半徑畫弧,交直線y=x于點B3;過B3點作B3A4∥y軸,交直線y=2x于點A4,以點O為圓心,以OA4長為半徑畫弧,交直線y=x于點B4,…按照如此規(guī)律進行下去,點B2020的坐標為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com