【題目】九年級(jí)學(xué)生到距離學(xué)校6千米的百花公園去春游,一部分學(xué)生步行前往,20分鐘后另一部分學(xué)生騎自行車前往,設(shè)(分鐘)為步行前往的學(xué)生離開學(xué)校所走的時(shí)間,步行學(xué)生走的路程為千米,騎自行車學(xué)生騎行的路程為千米,關(guān)于的函數(shù)圖象如圖所示.

1)求關(guān)于的函數(shù)解析式;

2)步行的學(xué)生和騎自行車的學(xué)生誰(shuí)先到達(dá)百花公園,先到了幾分鐘?

【答案】;(2)騎自行車的學(xué)生先到達(dá)百花公園,先到了10分鐘.

【解析】

1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得關(guān)于的函數(shù)解析式;

2)根據(jù)函數(shù)圖象中的數(shù)據(jù)和題意可以分別求得步行學(xué)生和騎自行車學(xué)生到達(dá)百花公園的時(shí)間,從而可以解答本題.

解:(1)設(shè)關(guān)于的函數(shù)解析式是,

,得,

關(guān)于的函數(shù)解析式是

2)由圖象可知,

步行的學(xué)生的速度為:千米/分鐘,

步行同學(xué)到達(dá)百花公園的時(shí)間為:(分鐘),

當(dāng)時(shí), ,得,

,

答:騎自行車的學(xué)生先到達(dá)百花公園,先到了10分鐘.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某路公交車起點(diǎn)站設(shè)在一居民小區(qū)附近,為了解高峰時(shí)段從該起點(diǎn)站乘車出行的人數(shù),隨機(jī)抽查了高峰時(shí)段10個(gè)班次從該起點(diǎn)站乘車的人數(shù),結(jié)果如下:20、23、26、25、29、28、30、25、21、23.如果在高峰時(shí)段從該起點(diǎn)站共發(fā)車60個(gè)班次,那么估計(jì)在高峰時(shí)段從該起點(diǎn)站乘該路車出行的乘客一共有________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的對(duì)角線相交于點(diǎn),正方形的邊于點(diǎn)于點(diǎn).

1)求證:;

2)如果正方形的邊長(zhǎng)為,那么正方形點(diǎn)轉(zhuǎn)動(dòng)的過(guò)程中,與正方形重疊部分的面積始終等于__________.(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)BD、C在一條直線上,AB=AD,BC=DE,AC=AE,

1)求證:∠EAC=∠BAD

2)若∠BAD=42°,求∠EDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店用4500元購(gòu)進(jìn)AB兩種新式服裝,按標(biāo)價(jià)售出后可獲得毛利潤(rùn)2800元(毛利潤(rùn)=售價(jià)一進(jìn)價(jià)),這兩種服裝的進(jìn)價(jià)、標(biāo)價(jià)如表所示

類型價(jià)格

A

B

進(jìn)價(jià)(元/件)

60

100

標(biāo)價(jià)(元/件)

100

160

1)請(qǐng)利用二元一次方程組求A,B兩種新式服裝各購(gòu)進(jìn)的件數(shù);

2)如果A種服裝按標(biāo)價(jià)的9折出售,B種服裝按標(biāo)價(jià)的8折出售,那么這批服裝全部售完后,服裝店比按標(biāo)價(jià)出售少收入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰 RtABC ,AC=BC=2,點(diǎn) P 在以斜邊 AB 為直徑的半圓上,M PC 的中點(diǎn)當(dāng)點(diǎn) P 沿半圓從點(diǎn)A 運(yùn)動(dòng)至點(diǎn) B 時(shí),點(diǎn) M 運(yùn)動(dòng)的路徑長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017浙江省溫州市)小黃準(zhǔn)備給長(zhǎng)8m,寬6m的長(zhǎng)方形客廳鋪設(shè)瓷磚,現(xiàn)將其劃分成一個(gè)長(zhǎng)方形ABCD區(qū)域Ⅰ(陰影部分)和一個(gè)環(huán)形區(qū)域Ⅱ(空白部分),其中區(qū)域Ⅰ用甲、乙、丙三種瓷磚鋪設(shè),且滿足PQAD,如圖所示.

1)若區(qū)域Ⅰ的三種瓷磚均價(jià)為300元/m2,面積為Sm2),區(qū)域Ⅱ的瓷磚均價(jià)為200元/m2,且兩區(qū)域的瓷磚總價(jià)為不超過(guò)12000元,求S的最大值;

2)若區(qū)域Ⅰ滿足BC=23,區(qū)域Ⅱ四周寬度相等.

①求ABBC的長(zhǎng);

②若甲、丙兩瓷磚單價(jià)之和為300元/m2,乙、丙瓷磚單價(jià)之比為53,且區(qū)域Ⅰ的三種瓷磚總價(jià)為4800元,求丙瓷磚單價(jià)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圖中的小方格都是邊長(zhǎng)為1的正方形,ABCA、B、C三點(diǎn)坐標(biāo)為A(2,0)、B(2,2)、C(6,3)。

(1) 請(qǐng)?jiān)趫D中畫出一個(gè),使ABC是以坐標(biāo)原點(diǎn)為位似中心,相似比為2的位似圖形。

(2)求的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,AB=AC=13,BC=10,點(diǎn)DBC的中點(diǎn),DEAB于點(diǎn)E,tan BDE=

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案