如圖,在△ABC中,∠ACB=90°,O為BC邊上一點(diǎn),以O(shè)為圓心,OB為半徑作半圓與AB邊和BC邊分別交于點(diǎn)D、點(diǎn)E,連接CD,且CD=CA,BD=6
5
,tan∠ADC=2.
(1)求證:CD是半圓O的切線;
(2)求半圓O的直徑;
(3)求AD的長(zhǎng).
(1)證明:如圖,連接OD,
∵OD=OB,
∴∠1=∠2,
∵CA=CD,
∴∠ADC=∠A,
在△ABC中,
∵∠ACB=90°,
∴∠A+∠1=90°,
∴∠ADC+∠2=90°,
∴∠CDO=90°,
∵OD為半圓O的半徑,
∴CD為半圓O的切線;

(2)如圖,連接DE,
∵BE為半圓O的直徑,
∴∠EDB=90°,
∴∠1+∠3=90°,
∴∠ADC=∠3,
tan∠3=
BD
ED
=2
,
ED=3
5
,
EB=
BD2+DE2
=15
;

(3)作CF⊥AD于點(diǎn)F,
∵CD=CA,
∴AD=2AF=2DF,
設(shè)DF=x,
∵tan∠ADC=2,
∴CF=2x,
∵∠1+∠FCB=90°,
∴∠FCB=∠ADC,
∴tan∠FCB=2,
∴FB=4x,
∴BD=3x=6
5
,
解得x=2
5

∴AD=2DF=2x=4
5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知點(diǎn)A的坐標(biāo)為(
3
,3),AB丄x軸,垂足為B,連接OA,反比例函數(shù)y=
k
x
(k>0)的圖象與線段OA、AB分別交于點(diǎn)C、D.若AB=3BD,以點(diǎn)C為圓心,CA的
5
4
倍的長(zhǎng)為半徑作圓,則該圓與x軸的位置關(guān)系是______(填”相離”,“相切”或“相交“).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB是半圓的直徑,直線MN切半圓于點(diǎn)C,AM⊥MN,BN⊥MN,如果AM=a,BN=b,那么半圓的直徑為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,A是半徑為12cm的⊙O上的定點(diǎn),動(dòng)點(diǎn)P從A出發(fā),以2πcm/s的速度沿圓周逆時(shí)針運(yùn)動(dòng),當(dāng)點(diǎn)P回到A地立即停止運(yùn)動(dòng).
(1)如果∠POA=90°,求點(diǎn)P運(yùn)動(dòng)的時(shí)間;
(2)如果點(diǎn)B是OA延長(zhǎng)線上的一點(diǎn),AB=OA,那么當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為2s時(shí),判斷直線BP與⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C為AB延長(zhǎng)線上的一點(diǎn),CD交⊙O于點(diǎn)D,且∠A=∠C=30°.
(1)求證:CD是⊙O的切線;
(2)請(qǐng)判斷線段AC是BC的多少倍,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上一點(diǎn),且ADOC.
(1)求證:△ADB△OBC;
(2)若AB=2,BC=
5
,求AD的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,∠D=90°,AD=a,BC=b,AB=c,以AB為直徑作⊙O.試探究:
(1)當(dāng)a,b,c滿(mǎn)足什么關(guān)系時(shí),⊙O與DC相離?
(2)當(dāng)a,b,c滿(mǎn)足什么關(guān)系時(shí),⊙O與DC相切?
(3)當(dāng)a,b,c滿(mǎn)足什么關(guān)系時(shí),⊙O與DC相交?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠ABC=90°,AB=6,BC=8.以AB為直徑的⊙O交AC于D,E是BC的中點(diǎn),連接ED并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)F.
(1)求證:DE是⊙O的切線;
(2)求DB的長(zhǎng);
(3)求S△FAD:S△FDB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

PA、PB切⊙O于A、B,∠APB=78°,點(diǎn)C是⊙O上異于A、B的任意一點(diǎn),則∠ACB=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案