【題目】如圖,已知ABC中,AB=AC=6cm,BC=4cm,點DAB的中點

⑴如果點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動

①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,BPDCPQ是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為______cm/s時,在某一時刻也能夠使BPDCPQ全等

⑵若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都按逆時針方向沿ABC的三邊運動求經(jīng)過多少秒后,點P與點Q第一次相遇,并寫出第一次相遇點在ABC的哪條邊上?

【答案】11s;(2Q的運動速度為cm/s時,能使△BPD≌△CPQ;P、QAC邊上相遇,相遇地點距離C4cm處.

【解析】

(1)①根據(jù)時間和速度分別求得兩個三角形中的邊的長,根據(jù) 判定兩個三角形全等.
②根據(jù)全等三角形應滿足的條件探求邊之間的關系,再根據(jù)路程=速度×時間公式,先求得點運動的時間,再求得點的運動速度;
(2)根據(jù)題意結合圖形分析發(fā)現(xiàn):由于點的速度快,且在點的前邊,所以要想第一次相遇,則應該比點多走等腰三角形的兩個邊長.

1)①全等.理由如下:

證明:∵t=1秒,

BP=CQ=1×1=1 cm,

AB=6cm,

DAB的中點,

BD=3cm

又∵PC=BCBPBC=4cm,

PC=41=3cm,

PC=BD

又∵AB=AC,∴∠B=C,

②假設

∴點P,Q運動的時間秒,

2)設經(jīng)過x秒后點P與點Q第一次相遇,

由題意得:1.5x=x+2×6,解得x=24.

∴點P共運動了24×1m/s=24cm

24=16+4+4 ∴點P、點QAC邊上相遇,

∴經(jīng)過24秒點P與點Q第一次在邊AC上相遇.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在中,,點D沿BCBC運動D與點B、C不重合,作E,F,則的值  

A. 不變 B. 增大 C. 減小 D. 先變大再變小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一張長方形的紙對折,如圖所示可得到一條折痕(圖中虛線).繼續(xù)對折,對折時每次折痕與上次的折痕保持平行,連續(xù)對折三次后,可以得到條折痕,那么對折四次可以得到( )條折痕.如果對折次, 可以得到( )條折痕

A.,B.,C.,D.,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD相交于點O,過點C作CEBD,過點D作DEAC,CE與DE相交于點E.

(1)求證:四邊形CODE是矩形;

(2)若AB=10,AC=12,求四邊形CODE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ACAB.

(1)AB邊的垂直平分線交BC于點P,作AC邊的垂直平分線交BC于點Q,連接AP,AQ.(尺規(guī)作圖,保留作圖痕跡,不需要寫作法)

(2)(1)的條件下,若BC14,求△APQ的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,ACB=90°,BAC=60°,AB=6,RtAB'C'可以看作是由RtABC繞點A逆時針方向旋轉60°得到的,則線段B'C的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】芭蕾舞劇《吉賽爾》在城市劇院演出前,主辦方工作人員準備利用米長的墻為一邊,用米隔欄繩作為另三邊,設立一個面積為平方米的長方形等候區(qū),如圖,為了方便觀眾進出,在與墻垂直的兩邊上留出一個進口和兩個出口,寬度都為米,問圍成的這個長方形的相鄰兩邊長分別是多少?

解:令這個長方形垂直于墻的一邊為寬,平行于墻的一邊為長;設這個長方形的寬為米,則長為_____________米.(完成填空后繼續(xù)解題)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 xOy 中,菱形 ABOC 的頂點 O 在坐標原點,邊 BOx 軸的負半軸上,頂點 C的坐標為(﹣34),反比例函數(shù) y 的圖象與菱形對角線 AO 交于 D 點,連接 BD,當 BDx 軸時,k的值是( )

A.B.C.12D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ADBCD,AE平分∠BAC

1)若∠B30°,∠C70°,則∠DAE   

2)若∠C﹣∠B30°,則∠DAE   

3)若∠C﹣∠Bα(∠C>∠B),求∠DAE的度數(shù)(用含α的代數(shù)式表示).

查看答案和解析>>

同步練習冊答案