【題目】如圖,在菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,過(guò)點(diǎn)C作CE∥BD,過(guò)點(diǎn)D作DE∥AC,CE與DE相交于點(diǎn)E.
(1)求證:四邊形CODE是矩形;
(2)若AB=10,AC=12,求四邊形CODE的周長(zhǎng).
【答案】(1)證明見(jiàn)解析(2)28
【解析】
(1)如圖,首先證明四邊形CODE是平行四邊形,然后證明∠DOC=90°,即可解決問(wèn)題.(2)如圖,首先證明CO=AO=6, ∠AOB=90°;運(yùn)用勾股定理求出BO,即可解決問(wèn)題.
(1)∵CE∥BD,DE∥AC,
∴四邊形CODE是平行四邊形,
∵四邊形ABCD是菱形
∴∠DOC=90°,
∴四邊形CODE是矩形;
(2)∵四邊形ABCD為菱形,
∴AO=OC=AC=6,OD=OB,∠AOB=90°,
由勾股定理得:
BO2=AB2﹣AO2,而AB=10,
∴DO=BO==8,
由(1)得四邊形CODE是矩形,
∴四邊形CODE的周長(zhǎng)=2(6+8)=28.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動(dòng),將三角尺GEF繞斜邊EF的中點(diǎn)O(點(diǎn)O也是BD中點(diǎn))按順時(shí)針?lè)较蛐D(zhuǎn).
(1)如圖2,當(dāng)EF與AB相交于點(diǎn)M,GF與BD相交于點(diǎn)N時(shí),通過(guò)觀察或測(cè)量BM,F(xiàn)N的長(zhǎng)度,猜想BM,F(xiàn)N滿足的數(shù)量關(guān)系,并證明你的猜想;
(2)若三角尺GEF旋轉(zhuǎn)到如圖3所示的位置時(shí),線段FE的延長(zhǎng)線與AB的延長(zhǎng)線相交于點(diǎn)M,線段BD的延長(zhǎng)線與GF的延長(zhǎng)線相交于點(diǎn)N,此時(shí),(1)中的猜想還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)黨中央“下好一盤(pán)棋,共護(hù)一江水”的號(hào)召,某治污公司決定購(gòu)買(mǎi)甲、乙兩種型號(hào)的污水處理設(shè)備共10臺(tái).經(jīng)調(diào)查發(fā)現(xiàn):購(gòu)買(mǎi)一臺(tái)甲型設(shè)備比購(gòu)買(mǎi)一臺(tái)乙型設(shè)備多2萬(wàn)元,購(gòu)買(mǎi)2臺(tái)甲型設(shè)備比購(gòu)買(mǎi)3臺(tái)乙型設(shè)備少6萬(wàn)元,且一臺(tái)甲型設(shè)備每月可處理污水240噸,一臺(tái)乙型設(shè)備每月可處理污水200噸.
(1)請(qǐng)你計(jì)算每臺(tái)甲型設(shè)備和每臺(tái)乙型設(shè)備的價(jià)格各是多少萬(wàn)元?
(2)若治污公司購(gòu)買(mǎi)污水處理設(shè)備的資金不超過(guò)109萬(wàn)元,月處理污水量不低于2080噸.
①求該治污公司有幾種購(gòu)買(mǎi)方案;
②如果為了節(jié)約資金,請(qǐng)為該公司設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,1)的拋物線交y軸于點(diǎn)A,交x軸于B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知C點(diǎn)坐標(biāo)為(6,0).
(1)求此拋物線的解析式;
(2)連結(jié)AB,過(guò)點(diǎn)B作線段AB的垂線交拋物線于點(diǎn)D,如果以點(diǎn)C為圓心的圓與拋物線的對(duì)稱軸l相切,先補(bǔ)全圖形,再判斷直線BD與⊙C的位置關(guān)系并加以證明;
(3)已知點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),且位于A,C兩點(diǎn)之間.問(wèn):當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAC的面積最大?求出△PAC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若點(diǎn)E、B、D到直線AC的距離分別為6、3、2,則圖中實(shí)線所圍成的陰影部分面積S是( )
A.50B.44C.38D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是邊長(zhǎng)為6cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC勻速運(yùn)動(dòng),其中點(diǎn)P運(yùn)動(dòng)的速度是1cm/s,點(diǎn)Q運(yùn)動(dòng)的速度是2cm/s,當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),解答下列問(wèn)題:
(1)當(dāng)t=2時(shí),判斷△BPQ的形狀,并說(shuō)明理由;
(2)設(shè)△BPQ的面積為S(cm2),求S與t的函數(shù)關(guān)系式;
(3)作QR//BA交AC于點(diǎn)R,連結(jié)PR,當(dāng)t為何值時(shí),△APR∽△PRQ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,BC=4cm,點(diǎn)D為AB的中點(diǎn).
⑴如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CPQ是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為______cm/s時(shí),在某一時(shí)刻也能夠使△BPD與△CPQ全等.
⑵若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都按逆時(shí)針?lè)较蜓?/span>△ABC的三邊運(yùn)動(dòng).求經(jīng)過(guò)多少秒后,點(diǎn)P與點(diǎn)Q第一次相遇,并寫(xiě)出第一次相遇點(diǎn)在△ABC的哪條邊上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點(diǎn)E,且BE∥AD,試求出∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請(qǐng)你認(rèn)真閱讀下面關(guān)于這個(gè)圖的探究片段,完成所提出的問(wèn)題.
(1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個(gè)三角形全等,但△ABE和△ECF顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強(qiáng)寫(xiě)出了如下的證明過(guò)程:
證明:如圖1,取AB的中點(diǎn)M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點(diǎn)E,M分別為正方形的邊BC和AB的中點(diǎn)
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請(qǐng)你證明這一結(jié)論.
(3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請(qǐng)你完成證明過(guò)程給小強(qiáng)看,若不成立請(qǐng)你說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com