【題目】如圖,正方形ABCD的邊長為1,點A與原點重合,點By軸的正半軸上,點Dx軸的負(fù)半軸上,將正方形ABCD繞點A逆時針旋轉(zhuǎn)30°至正方形AB'C′D′的位置,B'C′CD相交于點M,則點M的坐標(biāo)為_____

【答案】(﹣1,

【解析】連接AM,由旋轉(zhuǎn)性質(zhì)知AD=AB′=1、BAB′=30°、B′AD=60°,證RtADMRtAB′M得∠DAM=B′AD=30°,由DM=ADtanDAM可得答案.

如圖,連接AM,

∵將邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°得到正方形AB'C′D′,

AD=AB′=1,BAB′=30°,

∴∠B′AD=60°,

RtADMRtAB′M中,

,

RtADMRtAB′M(HL),

∴∠DAM=B′AM=B′AD=30°,

DM=ADtanDAM=1×=,

∴點M的坐標(biāo)為(﹣1,),

故答案為:(﹣1,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形ABC在平面直角坐標(biāo)系中的位置如圖

1)平移三角形ABC,使B點對應(yīng)點B’的坐標(biāo)為(-2,0),畫出三角形A'B'C';

2)若點P(a,b)是三角形ABC內(nèi)部一點,則平移后三角形A'B'C'內(nèi)的對應(yīng)點P'的坐標(biāo)為________

3)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017重慶A卷第11題)如圖,小王在長江邊某瞭望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為( 。▍⒖紨(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠EFG的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形AOBC的邊長為AO=6,AC=8

1)如圖,EOB的中點,將△AOE沿AE折疊后得到△AFE,點F在矩形AOBC內(nèi)部,延長AFBC于點G.求點G的坐標(biāo);

2)定義:若以不在同一直線上的三點中的一點為圓心的圓恰好過另外兩個點,這樣的圓叫做黃金圓.如圖,動點P以每秒2個單位的速度由點C向點A沿線段CA運動,同時點Q以每秒4個單位的速度由點O向點C沿線段OC運動;求:當(dāng) PQC三點恰好構(gòu)成黃金圓時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,.點開始沿邊向點的速度移動,與此同時,點從點開始沿邊向點的速度移動.如果、分別從同時出發(fā),當(dāng)點運動到點時,兩點停止運動,問:

經(jīng)過幾秒,的面積等于?

(2)的面積會等于嗎?若會,請求出此時的運動時間;若不會,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).

1)在平面直角坐標(biāo)系中畫出與△ABC關(guān)于點P10)成中心對稱的△A'B'C',并分別寫出點A'B',C'的坐標(biāo);

2)如果點Ma,b)是△ABC邊上(不與AB,C重合)任意一點,請寫出在△A'B'C'上與點M對應(yīng)的點M'的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABBCCDDA=2231,且∠ABC=90°,則∠DAB的度數(shù)是______°

查看答案和解析>>

同步練習(xí)冊答案