【題目】如圖,在RtABC中,∠C90°,以頂點(diǎn)A為圓心,適當(dāng)長為半徑畫弧,分別交AC、AB于點(diǎn)M、N,再分別以點(diǎn)M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,作射線AP交邊BC于點(diǎn)D,若AC24,AB30,且216,則ABD的面積是( )

A.105B.120

C.135D.115

【答案】B

【解析】

先利用勾股定理計(jì)算出BC=18,作DHABH,如圖,設(shè)DH=x,則BD=18-x,利用作法得AD為∠BAC的平分線,則根據(jù)角平分線的性質(zhì)得CD=DH=x,接著證明△ADC≌△ADH得到AH=AC=24,所以BH=6,然后在RtBDH中利用勾股定理得到x,然后根據(jù)三角形的面積公式即可得到結(jié)論.

解:在RtACB中,,

DHABH,如圖,

由作法得AD為∠BAC的平分線,設(shè)DH=x,

CD=DH=x,則BD=18-x,

RtADCRtADH中,,

∴△ADC≌△ADH,(HL),

AH=AC=24,

BH=30-24=6

RtBDH中,

解得:,

ABD的面積;

故選擇:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+4圖象交直線OA于點(diǎn)A(1,2),交y軸于點(diǎn)B,點(diǎn)C為坐標(biāo)平面內(nèi)一點(diǎn).

(1)k;

(2)若以OA、B、C為頂點(diǎn)的四邊形為菱形,則C點(diǎn)坐標(biāo)為 ;

(3)在直線AB上找點(diǎn)D,使OAD的面積與((2)中菱形面積相等,則D點(diǎn)坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若化簡|1-x|-的結(jié)果為2x5,則x的取值范圍是( 。

A. x為任意實(shí)數(shù)B. 1x4 C. x1D. x4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)Dy軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿線段AC﹣CB的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)點(diǎn)P經(jīng)過點(diǎn)C時(shí),求直線DP的函數(shù)解析式;

(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;

②如圖②,把長方形沿著OP折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).

(3)點(diǎn)P在運(yùn)動(dòng)過程中是否存在使△BDP為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般情況下不成立,但有些數(shù)對(duì)可以使得它成立,例如:ab0.我們稱使得成立的一對(duì)數(shù)ab為“相伴數(shù)對(duì)”,記為(a,b)

1)若(1,k)是“相伴數(shù)對(duì)”,求k的值;

2)直接寫出一個(gè)“相伴數(shù)對(duì)”(a0,b0),其中a0≠0,且a0≠1

3)若(m,n)相伴數(shù)對(duì),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春平中學(xué)要為學(xué)?萍蓟顒(dòng)小組提供實(shí)驗(yàn)器材,計(jì)劃購買A型、B型兩種型號(hào)的放大鏡.若購買8個(gè)A型放大鏡和5個(gè)B型放大鏡需用220元;若購買4個(gè)A型放大鏡和6個(gè)B型放大鏡需用152元.

(1)求每個(gè)A型放大鏡和每個(gè)B型放大鏡各多少元;

(2)春平中學(xué)決定購買A型放大鏡和B型放大鏡共75個(gè),總費(fèi)用不超過1180元,那么最多可以購買多少個(gè)A型放大鏡?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在ABC中,∠C=90°,AD是∠BAC的平分線,DEABEFAC上,BD=DF

求證:(1CF=EB

2AB=AF+2EB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個(gè)單位長度的小正方形組成的正方形中,點(diǎn)AB、C在小正方形的頂點(diǎn)上.

在圖中畫出與關(guān)于直線l成軸對(duì)稱的;

三角形ABC的面積為______;

AC為邊作與全等的三角形,則可作出______個(gè)三角形與全等;

在直線l上找一點(diǎn)P,使的長最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A,B在圓上,BC,AD分別與該圓相交于點(diǎn)E,F(xiàn),G是弧AF的三等分點(diǎn)(弧AG>弧GF),BGAF于點(diǎn)H.若弧AB的度數(shù)為30°,則∠GHF等于( )

A. 40° B. 45° C. 55° D. 80°

查看答案和解析>>

同步練習(xí)冊(cè)答案