【題目】如圖,在ABCD中,AM,CN分別是∠BAD和∠BCD的平分線,添加一個條件,仍無法判斷四邊形AMCN為菱形的是( )
A.AM=AN B.MN⊥AC
C.MN是∠AMC的平分線 D.∠BAD=120°
【答案】D.
【解析】
試題解析:如圖,
∵四邊形ABCD是平行四邊形,
∴∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,
∵AM,CN分別是∠BAD和∠BCD的平分線,
∴∠DCN=∠DCB,∠BAM=∠BAD,
∴∠BAM=∠DCN,
在△ABM和△CDN中
,
∴△ABM≌△CDN(ASA),
∴AM=CN,BM=DN,
∵AD=BC,
∴AN=CM,
∴四邊形AMCN是平行四邊形,
A、∵四邊形AMCN是平行四邊形,AM=AN,
∴平行四邊形AMCN是菱形,故本選項錯誤;
B、∵MN⊥AC,四邊形AMCN是平行四邊形,
∴平行四邊形AMCN是菱形,故本選項錯誤;
C、∵四邊形AECF是平行四邊形,
∴AF∥BC,
∴∠FAC=∠ACE,
∵AC平分∠EAF,
∴∠FAC=∠EAC,
∴∠EAC=∠ECA,
∴AE=EC,
∵四邊形AECF是平行四邊形,
∴四邊形AECF是菱形,故本選項錯誤;
D、根據(jù)∠BAD=120°和平行四邊形AMCN不能推出四邊形是菱形,故本選項正確;
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN與∠AOB互補,若∠MPN在繞點P旋轉的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長不變,其中正確的個數(shù)為( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,現(xiàn)有一個大正方形和四個一樣的小正方形,小明、小聰、小方分別用這些正方形設計出了圖1,圖2,圖3三種圖案:
(1)根據(jù)圖1,圖2中所標數(shù)據(jù),求出大正方形和小正方形的邊長分別是多少厘米?
(2)若圖3中四個小正方形的重疊部分也是三個一樣的小正方形,求大正方形中未被小正方形覆蓋的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,反比例函數(shù)y=的圖象與一次函數(shù)y=k(x-2)的圖象交點為A(3,2),B(x,y).
(1)求反比例函數(shù)與一次函數(shù)的解析式及B點坐標;
(2)若C是y軸上的點,且滿足△ABC的面積為10,求C點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列方程中,兩實數(shù)根之和等于2的方程是( 。
A. x2+2x﹣3=0 B. x2﹣2x+3=0 C. 2x2﹣2x﹣3=0 D. 3x2﹣6x+1=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉動其中一張,重合部分構成一個四邊形,則下列結論中不一定成立的是( )
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,已知△ABC≌△DBE,點D在AC上,BC與DE交于點P,若AD=DC=2.4,BC=4.1.
(1)若∠ABE=162°,∠DBC=30°,求∠CBE的度數(shù);
(2)求△DCP與△BPE的周長和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點,M是BC邊上的動點點M不與B,C重合,,CN與AB交于點N,連接OM,ON,下列五個結論:≌;≌;∽;;若,則的最小值是,其中正確結論的個數(shù)是
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com