【題目】閱讀下面材料:
小昊遇到這樣一個問題:如圖1,在△ABC中,∠ACB=90°,BE是AC邊上的中線,點D在BC邊上,CD:BD=1:2,AD與BE相交于點P,求 的值.
(1)小昊發(fā)現,過點A作AF∥BC,交BE的延長線于點F,通過構造△AEF,經過推理和計算能夠使問題得到解決(如圖2).
請回答: 的值為 .
(2)參考小昊思考問題的方法,解決問題:
如圖3,在△ABC中,∠ACB=90°,點D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3.
①求 的值;
(3)②若CD=2,則BP= .
【答案】
(1)
(2)過點A作AF∥DB,交BE的延長線于點F,如圖,
設DC=k,由DC:BC=1:2得BC=2k,DB=DC+BC=3k.
∵E是AC中點,
∴AE=CE.
∵AF∥DB,
∴∠F=∠1.
在△AEF和△CEB中,
,
∴△AEF≌△CEB,
∴EF=BE,AF=BC=2k.
∵AF∥DB,
∴△AFP∽△DBP,
∴ = = = = .
∴ 的值為
(3)6
【解析】解:(1) 的值為 .
提示:易證△AEF≌△CEB,則有AF=BC.
設CD=k,則DB=2k,AF=BC=3k,
由AF∥BC可得△APF∽△DPB,
即可得到 = = .
所以答案是: ;
·(3)②當CD=2時,BC=4,AC=6,
∴EC= AC=3,EB= =5,
∴EF=BE=5,BF=10.
∵ = (已證),
∴ = ,
∴BP= BF= ×10=6.
所以答案是6.
【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數學 來源: 題型:
【題目】如圖:在數軸上A點表示數a,B點示數b,C點表示數c,b是最小的正整數,且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數軸折疊,使得A點與C點重合,則點B與數 表示的點重合.
(3) 點A,B,C開始在數軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數式表示)
(4) 請問:3BC-2AB的值是否隨著時間t的變化而改變? 若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數是( )
①AD是∠BAC的平分線;
②∠ADC=60°;
③點D在AB的中垂線上;
④BD=2CD.
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠1=∠2,G為AD的中點,BG的延長線交AC于點E,F為AB上的一點,CF與AD垂直,交AD于點H,則下面判斷正確的有( 。
①AD是△ABE的角平分線;②BE是△ABD的邊AD上的中線;
③CH是△ACD的邊AD上的高;④AH是△ACF的角平分線和高
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知數軸上點A表示的數為8,B是數軸上位于點A左側一點,且AB=20,
(1)寫出數軸上點B表示的數 ;
(2)|5﹣3|表示5與3之差的絕對值,實際上也可理解為5與3兩數在數軸上所對的兩點之間的距離.如|x﹣3|的幾何意義是數軸上表示有理數x的點與表示有理數3的點之間的距離.試探索:
①:若|x﹣8|=2,則x= .
②:|x+12|+|x﹣8|的最小值為 .
(3)動點P從O點出發(fā),以每秒5個單位長度的速度沿數軸向右勻速運動,設運動時間為t(t>0)秒.求當t為多少秒時?A,P兩點之間的距離為2;
(4)動點P,Q分別從O,B兩點,同時出發(fā),點P以每秒5個單位長度沿數軸向右勻速運動,Q點以P點速度的兩倍,沿數軸向右勻速運動,設運動時間為t(t>0)秒.問當t為多少秒時?P,Q之間的距離為4.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知等邊△ABC的邊長為4cm,點P,Q分別從B,C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1cm/s;
點Q沿CA,AB向終點B運動,速度為2cm/s,設它們運動的時間為x(s),
(1)如圖(1),當x為何值時,PQ∥AB;
(2)如圖(2),若PQ⊥AC,求x;
(3)如圖(3),當點Q在AB上運動時,PQ與△ABC的高AD交于點O,OQ與OP是否總是相等?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解方程:
(1) 5(x+8)=6(2x-7)+5;
(2) 5-=x;
(3) -=1;
(4) -=1;
(5) 2x-[x-(x-1)]=( x-1).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場銷售“喜羊羊”玩具,預測該產品能夠暢銷,就用32000元購進了一批這種玩具,上市后很快脫銷,商場又用68000元購進第二批這種玩具,所購數量是第一批購進數量的2倍,但每個進價多了10元.
(1)該商場兩次共購進這種玩具多少個?
(2)如果這兩批玩具每套的售價相同,且全部售完后總利潤率不低于20%,那么每件售價至少是多少元?(利潤率)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com