【題目】如圖,在平行四邊形紙片中,,將紙片沿對(duì)角線對(duì)折,邊與邊交于點(diǎn),此時(shí)恰為等邊三角形,則重疊部分的面積為_________.
【答案】
【解析】
首先根據(jù)等邊三角形的性質(zhì)可得A B'=AE=E B',∠B'=∠B'EA=60°,根據(jù)折疊的性質(zhì),∠BCA=∠B'CA,,再證明∠B'AC=90°,再證得S△AEC=S△AEB',再求S△A B'C進(jìn)而可得答案.
解:∵為等邊三角形,
∴A B'=AE=E B',∠B'=∠B'EA=60°,
根據(jù)折疊的性質(zhì),∠BCA=∠B'CA,
∵四邊形ABCD是平行四邊形,
∴AD//BC,AD=BC,AB=CD,
∴∠B'EA=∠B'CB,∠EAC=∠BCA,
∴∠ECA=∠BCA=30°,
∴∠EAC=30°,
∴∠B'AC=90°,
∵,
∴B'C=8,
∴AC==,
∵B'E=AE=EC,
∴S△AEC=S△AEB'= S△A B'C= × ×4×=,
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后得到正方形AB′C′D′,邊B′C′與DC交于點(diǎn)O,則四邊形AB′OD的面積是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年1月1日新交通法規(guī)開(kāi)始實(shí)施.為了解某社區(qū)居民遵守交通法規(guī)情況,小明隨機(jī)選取部分居民就“行人闖紅燈現(xiàn)象”進(jìn)行問(wèn)卷調(diào)查,調(diào)查分為“A:從不闖紅燈;B:偶爾闖紅燈;C:經(jīng)常闖紅燈;D:其他”四種情況,并根據(jù)調(diào)查結(jié)果繪制出部分條形統(tǒng)計(jì)圖(如圖1)和部分扇形統(tǒng)計(jì)圖(如圖2).請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)本次調(diào)查共選取 名居民;
(2)求出扇形統(tǒng)計(jì)圖中“C”所對(duì)扇形的圓心角的度數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果該社區(qū)共有居民1600人,估計(jì)有多少人從不闖紅燈?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)E,CF⊥AF,且CF=CE.
(1)求證:CF是⊙O的切線;
(2)若sin∠BAC=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點(diǎn)E,F(xiàn)為DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】幾何學(xué)的產(chǎn)生,源于人們對(duì)土地面積測(cè)量的需要,以面積早就成為人們認(rèn)識(shí)圖形性質(zhì)與幾何證明的有效工具,可以說(shuō)幾何學(xué)從一開(kāi)始便與面積結(jié)下了不解之緣.我們已經(jīng)掌握了平行四邊形面積的求法,但是一般四邊形的面積往往不易求得,那么我們能否將其轉(zhuǎn)化為平行四邊形來(lái)求呢?
(1)方法1:如圖①,連接四邊形的對(duì)角線,,分別過(guò)四邊形的四個(gè)頂點(diǎn)作對(duì)角線的平行線,所作四條線相交形成四邊形,易證四邊形是平行四邊形.請(qǐng)直接寫(xiě)出S四邊形ABCD和之間的關(guān)系:_______________.
方法2:如圖②,取四邊形四邊的中點(diǎn),,,,連接,,,,
(2)求證:四邊形是平行四邊形;
(3)請(qǐng)直接寫(xiě)出S四邊形ABCD與之間的關(guān)系:_____________.
方法3:如圖③,取四邊形四邊的中點(diǎn),,,,連接,交于點(diǎn).先將四邊形繞點(diǎn)旋轉(zhuǎn)得到四邊形,易得點(diǎn),,在同一直線上;再將四邊形繞點(diǎn)旋轉(zhuǎn)得到四邊形,易得點(diǎn),,在同一直線上;最后將四邊形沿方向平移,使點(diǎn)與點(diǎn)重合,得到四邊形;
(4)由旋轉(zhuǎn)、平移可得_________,_________,所以,所以點(diǎn),,在同一直線上,同理,點(diǎn),,也在同一點(diǎn)線上,所以我們拼接成的圖形是一個(gè)四邊形.
(5)求證:四邊形是平行四邊形.
(注意:請(qǐng)考生在下面2題中任選一題作答如果多做,則按所做的第一題計(jì)分)
(6)應(yīng)用1:如圖④,在四邊形中,對(duì)角線與交于點(diǎn),,,,則S四邊形ABCD= .
(7)應(yīng)用2:如圖⑤,在四邊形中,點(diǎn),,,分別是,,,的中點(diǎn),連接,交于點(diǎn),,,,則S四邊形ABCD=___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李在學(xué)校“青少年科技創(chuàng)新比賽”活動(dòng)中,設(shè)計(jì)了一個(gè)沿直線軌道做勻速直線運(yùn)動(dòng)的模型.甲車(chē)從處出發(fā)向處行駛,同時(shí)乙車(chē)從處出發(fā)向處行駛.如圖所示,線段、分別表示甲車(chē)、乙車(chē)離處的距離(米)與已用時(shí)間(分)之間的關(guān)系.試根據(jù)圖象,解決以下問(wèn)題:
(1)填空:出發(fā)_________(分)后,甲車(chē)與乙車(chē)相遇,此時(shí)兩車(chē)距離處________(米);
(2)求乙車(chē)行駛(分)時(shí)與處的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB 為⊙O 的直徑,點(diǎn) C 為⊙O 上一點(diǎn),AD 和過(guò)點(diǎn) C 的切線相互垂直,垂足為 D.
(1)求證:AC 平分∠DAB;
(2)AD 交⊙O 于點(diǎn) E,若 AD=3CD=9,求 AE 的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果m是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),n是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),那么關(guān)于x的一元二次方程x2-2mx+n2=0有實(shí)數(shù)根的概率為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com