【題目】如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關(guān)系,并證明你的結(jié)論.
∠C與∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補(bǔ)角定義)
∴∠2=___(___),
∴AB∥EF(___)
∵∠3=___(___)
又∠B=∠3(已知)
∴∠B=___(等量代換)
∴DE∥BC(___)
∴∠C=∠AED(___).
【答案】∠DFE;同角的補(bǔ)角相等;內(nèi)錯角相等,兩直線平行;∠ADE;兩直線平行,內(nèi)錯角相等;∠ADE;同位角相等,兩直線平行;兩直線平行,同位角相等.
【解析】
首先求出∠2=∠DFE,兩直線平行可判斷出AB∥EF,進(jìn)而得到∠B=∠ADE,可判斷出DE∥BC,由平行線的性質(zhì)即可得出答案.
∠C與∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補(bǔ)角定義),
∴∠2=∠DFE(同角的補(bǔ)角相等),
∴AB∥EF(內(nèi)錯角相等,兩直線平行),
∴∠3=∠ADE(兩直線平行,內(nèi)錯角相等),
又∠B=∠3(已知),
∴∠B=∠ADE(等量代換),
∴DE∥BC(同位角相等,兩直線平行),
∴∠C=∠AED(兩直線平行,同位角相等).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)E為矩形的邊CD上的任意一點(diǎn),點(diǎn)P為線段AE的中點(diǎn),連接BP并延長與邊AD交于點(diǎn)F,點(diǎn)M為邊CD上的一點(diǎn),且CM=DE,連接FM.
(1)依題意補(bǔ)全圖形;
(2)求證∠DMF=∠ABF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】父親兩次將100斤糧食分給兄弟倆,第一次分給哥哥的糧食等于第二次分給弟弟的2倍,第二次分給哥哥的糧食是第一次分給弟弟的3倍,求兩次分糧食中,哥哥、弟弟各分到多少糧食?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和矩形構(gòu)成,矩形的長是,寬是,拱頂到地面的距離是,若以原點(diǎn), 所在的直線為軸, 所在的直線為軸,建立平面直角坐標(biāo)系.
()畫出平面直角坐標(biāo)系,并求出拋物線的函數(shù)表達(dá)式.
()在拋物線型拱壁, 處安裝兩盞燈,它們離地面的高度都是,則這兩盞燈的水平距離是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )
A. ∠1=∠3 B. 如果∠2=30°,則有AC∥DE
C. 如果∠2=30°,則有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.
(1)求m,k的值;
(2)如果M為x軸上一點(diǎn),N為y軸上一點(diǎn), 以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,試求直線MN的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填入相應(yīng)的大括號里:
-6, 9.3,,42,0,-0.33,0.333…,1.41421356,-2π,3.3030030003…,-3.1415926.
正數(shù)集合{ };
負(fù)數(shù)集合{ };
有理數(shù)集合{ };
無理數(shù)集合{ }.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞點(diǎn)順時針旋轉(zhuǎn)得到,使點(diǎn)的對應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com