【題目】已知,兩點(diǎn)關(guān)于軸對稱,且點(diǎn)在反比例函數(shù)的圖象上,點(diǎn)在直線上,設(shè)點(diǎn)坐標(biāo)為,則的頂點(diǎn)坐標(biāo)為________.
【答案】
【解析】
根據(jù)關(guān)于x軸對稱的點(diǎn)的橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)表示出點(diǎn)N的坐標(biāo),然后把點(diǎn)M的坐標(biāo)代入反比例函數(shù)解析式求出ab的值,把點(diǎn)N的坐標(biāo)代入直線解析式求出b-a的值,再代入二次函數(shù)解析式并配方成頂點(diǎn)式解析式,即可得解.
解:∵M,N兩點(diǎn)關(guān)于x軸對稱,點(diǎn)M坐標(biāo)為(a,b),
∴點(diǎn)N的坐標(biāo)為(a,-b),
∵點(diǎn)M在反比例函數(shù)y=的圖象上,點(diǎn)N在直線y=-x+3上,
∴=b,-a+3=-b,
解得ab=,b-a=-3,
∴二次函數(shù)解析式為y=-x2-3x=-(x2+3x+9)=-(x+3)2+,
∴頂點(diǎn)坐標(biāo)為(-3,).
故答案為:(-3,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,在△ABC中,∠BAC=90,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D.E證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D. A.E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC,請問結(jié)論DE=BD+CE是否成立,若成立,請你給證明:若不存在,請說明理由。
(3)應(yīng)用:如圖③,在△ABC中,∠BAC是鈍角,AB=AC,∠BAD>∠CAE,D. A.E三點(diǎn)都在直線m上,且∠BDA=∠AEC=∠BAC,只出現(xiàn)m與BC的延長線交于點(diǎn)F,若BD=5,DE=7,EF=2CE,求△ABD與△ABF的面積之比。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),等腰直角三角形OAB的斜邊AO在x軸上,,點(diǎn)B的坐標(biāo)為.
(1)求A點(diǎn)坐標(biāo);
(2)過B作軸于C,點(diǎn)D從B出發(fā)沿射線BC以每秒2個(gè)單位的速度運(yùn)動(dòng),連接AD、OD,動(dòng)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t,的面積為S,求S與t的數(shù)量關(guān)系,并直接寫出t的取值范圍;
(3)在(2)的條件下,當(dāng)點(diǎn)D運(yùn)動(dòng)到x軸下方時(shí),延長AB交y軸于E,過E作于H,在x軸正半軸上取點(diǎn)F,連接BF交EH于G,,當(dāng)時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ADE,∠DAC=70°,∠BAE=100°,BC、DE相交于點(diǎn)F,則∠DFB度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在二次函數(shù),與的部分對應(yīng)值如下表:
… | … | |||||
… | … |
則下列說法:①圖象經(jīng)過原點(diǎn);②圖象開口向下;③圖象經(jīng)過點(diǎn);④當(dāng)時(shí),隨的增大而增大;⑤方程有兩個(gè)不相等的實(shí)數(shù)根.其中正確的是( )
A. ①②③ B. ①③⑤ C. ①③④ D. ①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:已知方程x2+x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x,所以x=,把x=,代入已知方程,
得()2 +﹣1=0.
化簡,得y2+2y﹣4=0,
故所求方程為y2+2y﹣4=0
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為 ;
(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為: .
②BC,CD,CF之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長線上時(shí),結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),延長BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=BC,請求出GE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店老板在武漢發(fā)現(xiàn)一款羽絨服,預(yù)測能暢銷市場,就用a萬元購進(jìn)了x件.這款羽絨服面市后,果然十分暢銷,很快售完.于是老板又在上海購進(jìn)了同款羽絨服,所購數(shù)量比在武漢所購的數(shù)量多20%,單價(jià)貴20元,總進(jìn)貨款比前一次多23%.
(1)請用含a和x的代數(shù)式分別表示在武漢以及上海購進(jìn)的羽絨服的單價(jià)(單位:元/件);
(2)若服裝店老板兩次進(jìn)貨共花費(fèi)17.84萬元,在銷售這款羽絨服時(shí)每件定價(jià)都是 1200元,第二次銷售后期由于天氣轉(zhuǎn)暖,服裝還剩沒有賣出,老板決定打8折銷售,最后全部售完.兩次銷售,服裝店老板共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形的邊長為,點(diǎn),,,分別在正方形的四條邊上,且,則四邊形的形狀為________,它的面積的最小值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com