若二次函數(shù)的圖象經(jīng)過點(diǎn)P(-3,2),則該圖象必經(jīng)過點(diǎn)(   )
A.(2,3) B.(-2,-3)C.(3,2)D.(-3,-2)
C.

試題分析:∵二次函數(shù)的對稱軸為y軸,∴若圖象經(jīng)過點(diǎn)P(﹣3,2),則該圖象必經(jīng)過點(diǎn)(3,2).故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0)、C(0,3),直線與BC邊相交于點(diǎn)D.

(1)求點(diǎn)D的坐標(biāo);
(2)若拋物線經(jīng)過A、D兩點(diǎn),試確定此拋物線的解析式;
(3)設(shè)(2)中的拋物線的對稱軸與直線AD交于點(diǎn)M,點(diǎn)P為對稱軸上一動點(diǎn),以P、A、M為頂點(diǎn)的三角形與△ABD相似,求符合條件的所有點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A、B,且A點(diǎn)的坐標(biāo)為(1,0),與y軸交于點(diǎn)C(0,1).

(1)求拋物線的解析式,并求出點(diǎn)B坐標(biāo);
(2)過點(diǎn)B作BD∥CA交拋物線于點(diǎn)D,連接BC、CA、AD,求四邊形ABCD的周長;(結(jié)果保留根號)
(3)在x軸上方的拋物線上是否存在點(diǎn)P,過點(diǎn)P作PE垂直于x軸,垂足為點(diǎn)E,使以B、P、E為頂點(diǎn)的三角形與△CBD相似?若存在請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)y=2x2的圖象向右平行移動1個單位,再向上平移5個單位,可得到的拋物線是(      )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線y=3x2的圖象先向上平移3個單位,再向右平移4個單位所得的解析式為(     )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與y軸交于點(diǎn)A,拋物線上的一點(diǎn)P在第四象限,連接AP與x軸交于點(diǎn)C,,且S△AOC=1,過點(diǎn)P作PB⊥y軸于點(diǎn)B.

(1)求BP的長;
(2)求拋物線與x軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,黎叔叔想用60m長的籬笆靠墻MN圍成一個矩形花圃ABCD,已知墻長MN=30m.

(1)能否使矩形花圃ABCD的面積為400m2?若能,請說明圍法;若不能,請說明理由.
(2)請你幫助黎叔叔設(shè)計一種圍法,使矩形花圃ABCD的面積最大,并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

永嘉縣綠色和特色農(nóng)產(chǎn)品在國際市場上頗具競爭力,其中香菇遠(yuǎn)銷日本和韓國等地.上市時,外商李經(jīng)理按市場價格10元/千克在我縣收購了2000千克香菇存放入冷庫中.據(jù)預(yù)測,香菇的市場價格每天每千克將上漲0.5元,但冷庫存放這批香菇時每天需要支出各種費(fèi)用合計340元,而且香菇在冷庫中最多保存110天,同時,平均每天有6千克的香菇損壞不能出售.
(1)若存放天后,將這批香菇一次性出售,設(shè)這批香菇的銷售總金額為元,試寫出之間的函數(shù)關(guān)系式.
(2)李經(jīng)理想獲得利潤22500元,需將這批香菇存放多少天后出售?(利潤=銷售總金額-收購成本-各種費(fèi)用)
(3)李經(jīng)理將這批香菇存放多少天后出售可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y=x2+3x+c經(jīng)過三點(diǎn),的大小關(guān)系為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案