【題目】如圖,菱形的邊長為,點在對角線(在點的左側(cè)),且的最小值為____

【答案】

【解析】

DMAC,使得DMEF1,連接BMACF,由四邊形DEFM是平行四邊形,推出DEFM,推出DEBFFMFBBM,根據(jù)兩點之間線段最短可知,此時DEFB最短,由四邊形ABCD是菱形,在RtBDM中,根據(jù)BM計算即可.

解:如圖,作DMAC,使得DMEF1,連接BMACF,

DMEF,DMEF,
∴四邊形DEFM是平行四邊形,
DEFM,
DEBFFMFBBM,
根據(jù)兩點之間線段最短可知,此時DEFB最短,
∵四邊形ABCD是菱形,AB3,∠BAD60°
ADAB
∴△ABD是等邊三角形,
BDAB3
RtBDM中,BM
DEBF的最小值為
故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線,為常數(shù)且)經(jīng)過點,頂點為,經(jīng)過點的直線軸平行,且交于點,的右側(cè)),與的對稱軸交于點,直線經(jīng)過點

1)用表示及點的坐標(biāo);

2的值是否是定值?若是,請求出這個定值;若不是,請說明理由;

3)當(dāng)直線經(jīng)過點時,求的值及點,的坐標(biāo);

4)當(dāng)時,設(shè)的外心為點,則

①求點的坐標(biāo);

②若點的對稱軸上,其縱坐標(biāo)為,且滿足,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABO的直徑,CO上的點,連接AC、CB,過OEOCB并延長EOF,使EOFO,連接AF并延長,AFCB的延長線交于D.求證:AE2FGFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的提高,短途旅行日趨火爆.我市某旅行社推出遼陽葫蘆島海濱觀光一日游項目,團隊人均報名費用y(元)與團隊報名人數(shù)x(人)之間的函數(shù)關(guān)系如圖所示,旅行社規(guī)定團隊人均報名費用不能低于88.旅行社收到的團隊總報名費用為w(元).

(1)直接寫出當(dāng)x≥20時,yx之間的函數(shù)關(guān)系式及自變量x的取值范圍;

(2)兒童節(jié)當(dāng)天旅行社收到某個團隊的總報名費為3000元,報名旅游的人數(shù)是多少?

(3)當(dāng)一個團隊有多少人報名時,旅行社收到的總報名費最多?最多總報名費是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某貨站傳送貨物的平面示意圖如圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶長為

1)求新傳送帶的長度;

2)如果需要在貨物著地點的左側(cè)留出的通道,試判斷距離點的貨物是否需要挪走,并說明理由.(說明:(1),(2)的計算結(jié)果精確到,參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

1)如圖①,在△ABC中,ABAC10BC12,點O是△ABC的外接圓的圓心,則OB的長為   

問題探究

2)如圖②,已知矩形ABCD,AB4AD6,點EAD的中點,以BC為直徑作半圓O,點P為半圓O上一動點,求E、P之間的最大距離;

問題解決

3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對的劣弧場地組成的,果園主人現(xiàn)要從入口D上的一點P修建一條筆直的小路DP.已知ADBC,∠ADB45°BD120米,BC160米,過弦BC的中點EEFBC于點F,又測得EF40米.修建小路平均每米需要40元(小路寬度不計),不考慮其他因素,請你根據(jù)以上信息,幫助果園主人計算修建這條小路最多要花費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若二次函數(shù)圖象的對稱軸為軸交于點C,與x軸交于點給出下列結(jié)論:①二次函數(shù)的最大值為;②;③;④當(dāng)時,;⑤其中正確的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB為直徑作半圓O,點C是半圓上一點,∠ABC的平分線交OEDBE延長線上一點,且DEFE

1)求證:ADO切線;

2)若AB20,tanEBA,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線ymx2+m3x3m0)與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點CAB4,點D為拋物線的頂點.

1)求點A和頂點D的坐標(biāo);

2)將點D向左平移4個單位長度,得到點E,求直線BE的表達式;

3)若拋物線yax26與線段DE恰有一個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案