【題目】如圖,在△ABC中,AB=13,BC=10,BC邊上的中線AD=12.
(1)求證:AD⊥BC;
(2)求AC的長.
【答案】
(1)
證明:∵AD是BC邊上的中線,BC=10
∴BD=CD= BC=5
∵BD2+ AD2=52+122=AB2= 132=169
即BD2+ AD2= AB2
∴△ABD是直角三角形,且∠ADB=90°
∴AD⊥BC
(2)
解:∵AD⊥BC
∴∠ADC=90°
在Rt△ADC中,
AC=
【解析】(1)由AD是中線,BC=10得BD=CD= BC=5;再根據(jù)勾股定理逆定理得出∠ADB=90°,即AD⊥BC。
(2)由(1)知AD⊥BC,根據(jù)勾股定理可以求出AC=
【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對勾股定理的逆定理的理解,了解如果三角形的三邊長a、b、c有下面關系:a2+b2=c2,那么這個三角形是直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】我省2013年的快遞業(yè)務量為1.4億件,受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)迅猛發(fā)展,2014年增速位居全國第一.若2015年的快遞業(yè)務量達到4.5億件,設2014年與2015年這兩年的年平均增長率為x,則下列方程正確的是( )
A.1.4(1+x)=4.5
B.1.4(1+2x)=4.5
C.1.4(1+x)2=4.5
D.1.4(1+x)+1.4(1+x)2=4.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“家電下鄉(xiāng)”活動期間,凡購買指定家用電器的農(nóng)村居民均可得到該商品售價13%的財政補貼.村民小李購買了一臺A型洗衣機,小王購買了一臺B型洗衣機,兩人一共得到財政補貼351元,又知B型洗衣機售價比A型洗衣機售價多500元.求:m
(1)A型洗衣機和B型洗衣機的售價各是多少元?
(2)小李和小王購買洗衣機除財政補貼外實際各付款多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,∠BAC=90°,AD⊥BC,則下列結(jié)論中,正確的個數(shù)為( )
①AB⊥AC; ②AD與AC互相垂直; ③點C到AB的垂線段是線段AB;
④點A到BC的距離是線段AD的長度; ⑤線段AB的長度是點B到AC的距離;
⑥AD+BD>AB.
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中,必然事件是( )
A.擲一枚硬幣,正面朝上
B.a是實數(shù),|a|≥0
C.某運動員跳高的最好成績是20.1米
D.從車間剛生產(chǎn)的產(chǎn)品中任意抽取一個,是次品
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,點A,B分別在x軸,y軸上,點A的坐標為(﹣1,0),∠ABO=30°,線段PQ的端點P從點O出發(fā),沿△OBA的邊按O→B→A→O運動一周,同時另一端點Q隨之在x軸的非負半軸上運動,如果PQ=,那么當點P運動一周時,點Q運動的總路程為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①一條直線有且只有一條垂線;②畫出點P到直線l的距離;③兩條直線相交就是垂直;④線段和射線也有垂線,其中正確的有_____;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列四種說法:
①過一點有且只有一條直線與已知直線平行;
②在同一平面內(nèi),兩條不相交的線段是平行線段;
③相等的角是對頂角;
④在同一平面內(nèi),若直線AB∥CD,直線AB與EF相交,則CD與EF相交.
其中,錯誤的是__________________________(填序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com