分析 (1)根據(jù)△ABC為等邊三角形,得到AB=AC.根據(jù)全等三角形的判定定理即可得到結(jié)論;
(2)根據(jù)全等三角形的性質(zhì)得到AP=AQ,∠BAP=∠CAQ.由三角形的外角的性質(zhì)得到∠BAC=∠BAP+∠PAC=60°,即可得到結(jié)論.
解答 (1)證明:∵△ABC為等邊三角形,
∴AB=AC.
在△ABP與△ACQ中,
∵$\left\{\begin{array}{l}{AB=AC}\\{∠ABP=∠ACQ}\\{BP=CQ}\end{array}\right.$,
∴△ABP≌△ACQ(SAS);
(2)解:△APQ為等邊三角形,
理由:∵△ABP≌△ACQ,
∴AP=AQ,∠BAP=∠CAQ,
∵∠BAC=∠BAP+∠PAC=60°,
∴∠PAQ=∠CAQ+∠PAC=60°,
∴△APQ是等邊三角形.
點評 本題考查了全等三角形的判定,考查了全等三角形對應(yīng)邊相等的性質(zhì),考查了正三角形的判定,本題中求證△ABP≌△ACQ是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com