【題目】問(wèn)題發(fā)現(xiàn)

1)如圖①,RtABC中,∠C90°AC6,BC8,點(diǎn)DAB邊上任意一點(diǎn),則CD的最小值為   ;

2)如圖②,矩形ABCD中,AB6BC8,點(diǎn)M、點(diǎn)N分別在EDBC上,求CM+MN的最小值;

3)如圖③.矩形ABCD中,AB6,BC8,點(diǎn)EAB邊上一點(diǎn),且AE4,點(diǎn)FEC邊上的任意一點(diǎn),把BEF沿EF翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)為G,連接AGCG,四邊形AGCD的面積是否存在最小值,若在在,求這個(gè)最小值及此時(shí)BF的長(zhǎng)度.若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2);(3)見(jiàn)解析.

【解析】

1)根據(jù)點(diǎn)到直線的距離最小,再用三角形的面積即可得出結(jié)論;

2)先根據(jù)軸對(duì)稱確定出點(diǎn)MN的位置,再利用面積求出CF,進(jìn)而求出CE,最后用三角函數(shù)即可求出CM+MN的最小值;

3)先確定出EGAC時(shí),四邊形AGCD的面積最小,再用銳角三角函數(shù)求出點(diǎn)GAC的距離,最后用面積之和即可得出結(jié)論,再用相似三角形得出的比例式求出CF即可求出BF

解:(1)如圖,過(guò)點(diǎn)CCD⊥ABD,根據(jù)點(diǎn)到直線的距離垂線段最小,此時(shí)CD最小,

Rt△ABC中,AC6,BC8,根據(jù)勾股定理得,AB10,

AC×BCAB×CD,

∴CD

故答案為:;

2)如圖,作出點(diǎn)C關(guān)于BD的對(duì)稱點(diǎn)E,過(guò)點(diǎn)EEN⊥BCN,交BDM,連接CM,此時(shí)CM+MNEN最;

四邊形ABCD是矩形,

∴∠BCD90°,CDAB6,根據(jù)勾股定理得,BD10

∵CE⊥BC,

BD×CFBC×CD

∴CF,

由對(duì)稱得,CE2CF

Rt△BCF中,cos∠BCF,

∴sin∠BCF,

Rt△CEN中,ENCEsin∠BCE

即:CM+MN的最小值為:;

3)如圖3,

四邊形ABCD是矩形,

∴CDAB6,ADBC8,∠ABC∠D90°,根據(jù)勾股定理得,AC10

∵AB6,AE4

點(diǎn)FBC上的任何位置時(shí),點(diǎn)G始終在AC的下方,

設(shè)點(diǎn)GAC的距離為h,

∵S四邊形AGCDSACD+SACGAD×CD+AC×h×8×6+×10×h5h+24,

要四邊形AGCD的面積最小,即:h最小,

點(diǎn)G是以點(diǎn)E為圓心,BE2為半徑的圓上在矩形ABCD內(nèi)部的一部分點(diǎn),

∴EG⊥AC時(shí),h最小,

由折疊知∠EGF∠ABC90°,

延長(zhǎng)EGACH,則EH⊥AC,

Rt△ABC中,sin∠BAC

Rt△AEH中,AE4sin∠BAC,

∴EHAE

∴hEHEG2,

∴S四邊形AGCD最小5h+24+2430

過(guò)點(diǎn)FFM⊥ACM,

∵EH⊥FGEH⊥AC,

四邊形FGHM是矩形,

∴FMGH

∵∠FCM∠ACB,∠CMFCBA90°,

∴△CMF∽△CBA

,

∴CF2,

∴BFBCCF826

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在等腰三角形ABC,BAC=120°,AB=AC=2,點(diǎn)DBC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),AC上取一點(diǎn)E,使∠ADE=30°

1)求證ABD∽△DCE;

2)設(shè)BD=x,AE=y,y關(guān)于x的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D是等邊ABCAB上的一點(diǎn),且ADDB12,現(xiàn)將ABC折疊,使點(diǎn)CD重合,折痕為EF,點(diǎn)E、F分別在ACBC上,則CECF的值為(   )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,二次函數(shù)的圖象經(jīng)過(guò)A3,3),與x軸正半軸交于B點(diǎn),與y軸交于C點(diǎn),ABC的外接圓恰好經(jīng)過(guò)原點(diǎn)O.

1)求B點(diǎn)的坐標(biāo)及二次函數(shù)的解析式;

2)拋物線上一點(diǎn)Qmm+3),(m為整數(shù)),點(diǎn)M為△ABC的外接圓上一動(dòng)點(diǎn),求線段QM長(zhǎng)度的范圍;

3)將△AOC繞平面內(nèi)一點(diǎn)P旋轉(zhuǎn)180°至△A'O'C'(點(diǎn)O'O為對(duì)應(yīng)點(diǎn)),使得該三角形的對(duì)應(yīng)點(diǎn)中的兩個(gè)點(diǎn)落在的圖象上,求出旋轉(zhuǎn)中心P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+x+2與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C.

(1)試求A,B,C的坐標(biāo);

(2)將ABC繞AB中點(diǎn)M旋轉(zhuǎn)180°,得到BAD.3

求點(diǎn)D的坐標(biāo);

判斷四邊形ADBC的形狀,并說(shuō)明理由;

(3)在該拋物線對(duì)稱軸上是否存在點(diǎn)P,使BMP與BAD相似?若存在,請(qǐng)直接寫(xiě)出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B是反比例函數(shù)圖象上的兩點(diǎn),過(guò)點(diǎn)AAC⊥y軸,垂足為C,交OB于點(diǎn)D,且DOB的中點(diǎn),若△ABO的面積為4,則k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABCD中頂點(diǎn)A坐標(biāo)(0,6),頂點(diǎn)B坐標(biāo)(-2,0),頂點(diǎn)C坐標(biāo)(8,0),點(diǎn)E為平行四邊形ABCD的對(duì)角線的交點(diǎn),求過(guò)點(diǎn)E且到點(diǎn)C的距離最大的直線解析式____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù)yx24x+3和一次函數(shù)y=﹣x+1,我們把ytx24x+3+1t)(﹣x+1)稱為這兩個(gè)函數(shù)的再生二次函數(shù),其中t是不為零的實(shí)數(shù),其圖象記作拋物線E.現(xiàn)有點(diǎn)A1,0)和拋物線E上的點(diǎn)B2n),請(qǐng)完成下列任務(wù):

(嘗試)

⑴判斷點(diǎn)A是否在拋物線E上;

⑵求n的值.

(發(fā)現(xiàn))通過(guò)(1)和(2)的演算可知,對(duì)于t取任何不為零的實(shí)數(shù),拋物線E總過(guò)定點(diǎn),請(qǐng)你求出定點(diǎn)的坐標(biāo).

(應(yīng)用)二次函數(shù)y=﹣3x2+8x5是二次函數(shù)yx24x+3和一次函數(shù)y=﹣x+1的一個(gè)再生二次函數(shù)嗎?如果是,求出t的值;如果不是,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,一次函數(shù)y=kx-2k和二次函數(shù)y=-kx2+2x-4(k是常數(shù)且k≠0)的圖象可能是( )

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案