精英家教網(wǎng)有一座拋物線型拱橋(如圖),正常水位時橋下河面寬20m,河面距拱頂4m.
(1)在如圖所示的平面直角坐標系中,求出拋物線解析式;
(2)為了保證過往船只順利航行,橋下水面的寬度不得小于18m.求水面在正常水位基礎上漲多少m時,就會影響過往船只?
分析:根據(jù)拋物線在坐標系的特殊位置,本題可以設拋物線的頂點式,交點式或者一般式,求出拋物線解析式;再運用解析式解決實際問題.
解答:解:(1)∵拋物線頂點坐標是(0,4),
∴設拋物線解析式為:y=ax2+4,
∵正常水位時橋下河面寬20m,在如圖所示的平面直角坐標系中,
∴B點坐標為:(10,0),
把B(10,0)代入得100a+4=0,
解得:a=-
1
25
,
∴y=-
1
25
x2+4;

(2)∵橋下水面的寬度不得小于18m,
∴當x=9時,得出y的值,
把x=9代入y=-
1
25
x2+4中得:y=-
1
25
×81+4=
19
25

∴水面在正常水位基礎上漲
19
25
米時,就會影響過往船只.
點評:會根據(jù)題意找出拋物線上的關鍵點,如頂點,與x軸的交點,等等;合理地選擇拋物線解析式的形式,使解題方便,快捷.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

有一座拋物線型拱橋(圖1),其水面寬為18米,拱頂離水面AB的距離為9米.有一貨船要將打包好的一些長方體物品(長、寬、高分別是4米、3米、8米)放在甲板上運過拱橋(假設載貨后船的甲板與水面大致平齊).
(1)求拋物線的解析式.
(2)若貨物堆放方式的正視圖如下(圖2),問船能載貨物通過拱橋嗎?通過計算說明你的結論.
精英家教網(wǎng)
(3)若改變貨物的堆放方式(正視圖如圖甲、圖乙).問圖甲和圖乙能否載貨物通過拱橋?假設此貨船的甲板只能提供寬13米,長18米的置物空間,為了盡可能地多裝這些長方體物品(略去其它因素),你會選用圖甲和圖乙中的哪一種載物方式,為什么?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

有一座拋物線型拱橋,其水面寬AB為18米,拱頂O離水面AB的距離OM為8米,貨船在水面精英家教網(wǎng)上的部分的橫斷面是矩形CDEF,如圖建立平面直角坐標系.
(1)求此拋物線的解析式;
(2)如果限定矩形的長CD為9米,那么矩形的高DE不能超過多少米,才能使船通過拱橋;
(3)若設EF=a,請將矩形CDEF的面積S用含a的代數(shù)式表示,并指出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)有一座拋物線型拱橋,正常水位時,橋下水面寬度為20m,拱頂距水面4m.
(1)如圖所示的直角坐標系中,求出該拋物線的關系式.
(2)在正常水位的基礎上,當水位上升h(m)時,橋下水面的寬度為d(m),求出將d表示為h的函數(shù)關系式.
(3)設正常水位時,橋下的水深為2m,為保證過往船只的順利通過,橋下水面的寬度不得小于18m,求水深超過多少米時就會影響過往船只在橋下順利航行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,有一座拋物線型拱橋,漲潮時橋內(nèi)水面寬AB為8米,落潮時水位下降5米,橋內(nèi)水面寬CD為12米.

(1)建立適當?shù)钠矫嬷苯亲鴺讼担⑶蟠藪佄锞的解析式;
(2)如圖2,某種貨船在水面上的部分的橫截面是梯形EFGH,且HE=FG,EF=
2
HE,∠GHE=45°.試問落潮時,能順利通過拱橋的這種貨船在水面上的部分最大高度是多少?

查看答案和解析>>

同步練習冊答案