如圖,拋物線y=ax2-5x+4a與x軸相交于點A、B,且經(jīng)過點C(5,4).該拋物線頂點為P.
(1)求a的值和該拋物線頂點P的坐標.
(2)求△PAB的面積;
(3)若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.
分析:(1)根據(jù)C點的坐標代入拋物線解析式y(tǒng)=ax2-5x+4a,求出a,即可得出拋物線解析式,再根據(jù)拋物線頂點坐標公式即可求出答案;
(2)根據(jù)y=x2-5x+4中y=0時,求出x的值,從而得出A、B兩點的坐標,再根據(jù)三角形的面積公式得出△PAB的面積;
(3)根據(jù)拋物線原頂點坐標和平移后的頂點,即可得出平移后拋物線解析式;
解答:解:(1)將C(5,4)的坐標代入拋物線解析式y(tǒng)=ax2-5x+4a,得a=1,
∴拋物線解析式y(tǒng)=x2-5x+4=(x-
5
2
)2-
9
4

∴拋物線頂點坐標為(
5
2
,-
9
4
)
;
(2)∵當y=x2-5x+4中y=0時,x1=1,x2=4,
∴A、B兩點的坐標為A(1,0),B(4,0),△PAB的面積=
1
2
×3×
9
4
=
27
8
,
(3)∵拋物線原頂點坐標為(
5
2
,-
9
4
)
,平移后的頂點為(-
3
2
,-
1
4
)
,
∴平移后拋物線解析式y=(x+
3
2
)2-
1
4
;
點評:此題考查了待定系數(shù)法求二次函數(shù)的解析式;關鍵是能根據(jù)二次函數(shù)的性質(zhì),三角形的面積,二次函數(shù)的圖象與幾何變換分別進行求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標,寫出一條正確的結論,并通過計算說明;
(3)設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點,試問當x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網(wǎng)O為坐標原點,拋物線上一點C的橫坐標為1.
(1)求A,B兩點的坐標;
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網(wǎng)與x軸交于點A、B,點A的坐標為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當△MNC的面積最大時,求點M、N的坐標;
(3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案