【題目】如圖1,拋物線交軸于點和點,交軸于點,一次函數(shù)的圖象經(jīng)過點,,點是拋物線上第二象限內(nèi)一點.
(1)求二次函數(shù)和一次函數(shù)的表達式;
(2)過點作軸的平行線交于點,作的垂線交于點,設點的橫坐標為,的周長為.
①求關于的函數(shù)表達式;
②求的周長的最大值及此時點的坐標;
(3)如圖2,連接,是否存在點,使得以,,為頂點的三角形與相似?若存在,直接寫出點的橫坐標;若不存在,請說明理由.
【答案】(1)拋物線為y= -x2-x+4;一次函數(shù)的表達式為y=x+4;(2)①關于的函數(shù)表達式為,②的周長的最大值為 ,此時點P;(3)點的橫坐標為 或.
【解析】
(1)把點A、B、C的坐標代入拋物線或直線表達式,即可求解;
(2)設點P坐標為(t,-t2-t+4),令-t2-t+4=x+4,解得:x= ,PD= ,利用△PDM∽△CBO,即可求解;
(3)分∠PCM=∠CBO、∠PCM=∠BCO,兩種情況求解即可.
解:(1)把點和點代入拋物線,
得,解得,∴拋物線為;
令,,解得或,
∴,
把,代入一次函數(shù),
得,解得,∴一次函數(shù)的表達式為;
(2)由題意,,,
∴,周長為12,
∵,,
令,解得,
∴,
∵軸,
∴,
∵,
∴,
∴,
∴,
∴關于的函數(shù)表達式為,
∵,
∴當時,的周長的最大值為,
此時點;
(3)存在,點的橫坐標為或.
①如圖1,當時,
即,此時,
令,
解得(舍去)或;
②如圖2,當時,
即,作點關于直線的對稱點,
直線交拋物線于另一點即為所求的點,作軸于.
易得,,得,,
∴點,
可得直線的表達式為,求得點的橫坐標為.
故答案為:(1)拋物線為y= -x2-x+4;一次函數(shù)的表達式為y=x+4;(2)①關于的函數(shù)表達式為,②的周長的最大值為 ,此時點P;(3)點的橫坐標為 或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖坐標系中,O(0,0) ,A(6,6),B(12,0).將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE=,則CE : DE的值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,,點為上的動點,且.
(1)求的長度;
(2)在點D運動的過程中,弦AD的延長線交BC的延長線于點E,問ADAE的值是否變化?若不變,請求出ADAE的值;若變化,請說明理由.
(3)在點D的運動過程中,過A點作AH⊥BD,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了弘揚我國古代數(shù)學發(fā)展的偉大成就,某校九年級進行了一次數(shù)學知識競賽,并設立了以我國古代數(shù)學家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學生成績統(tǒng)計表:
“祖沖之獎”的學生成績統(tǒng)計表:
分數(shù)分 | 80 | 85 | 90 | 95 |
人數(shù)人 | 4 | 2 | 10 | 4 |
根據(jù)圖表中的信息,解答下列問題:
這次獲得“劉徽獎”的人數(shù)是多少,并將條形統(tǒng)計圖補充完整;
獲得“祖沖之獎”的學生成績的中位數(shù)是多少分,眾數(shù)是多少分;
在這次數(shù)學知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數(shù)字“”,“”和“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標,把y作為縱坐標,記作點用列表法或樹狀圖法求這個點在第二象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在三個完全相同的小球上分別寫上-2,-1,2三個數(shù)字,然后裝入一個不透明的布袋內(nèi)攪勻,從布袋中取出一個球,記下小球上的數(shù)字為,放回袋中再攪勻,然后再從袋中取出一個小球,記下小球上的數(shù)字為,組成一對數(shù).
(1)請用列表或畫樹狀圖的方法,表示出數(shù)對的所有可能的結果;
(2)求直線不經(jīng)過第一象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲樓AB高20m,乙樓CD高10m,兩棟樓之間的水平距離BD=20m,為了測量某電視塔EF的高度,小明在甲樓樓頂A處觀測電視塔塔頂E,測得仰角為37°,小麗在乙樓樓頂C處觀測電視塔塔頂E,測得仰角為45°,求電視塔的高度EF.(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.4,結果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,在△ABC中,∠B=45°,點D是BC邊的中點,DE⊥BC于點D,交AB于點E,連接CE.
(1)求∠AEC的度數(shù);
(2)請你判斷AE、BE、AC三條線段之間的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質,易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:過外一點C作直徑AF,垂足為E,交弦AB于D,若,則
判斷直線BC與的位置關系,并證明;
為OA中點,,,請直接寫出圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com