分析 (1)連結(jié)OC,先利用圓周角定理得到∠AOC=2∠B=90°,再利用切線的性質(zhì)得∠OCD=90°,根據(jù)平行線的判定即可得到結(jié)論;
(2)先判斷△AOC為等腰直角三角形得到∠OCA=45°,則∠ACD=45°=∠B,再利用平行線的性質(zhì)得∠BAE=∠D,然后根據(jù)相似三角形的判定即可得到結(jié)論;
(3)作AH⊥BC于H,如圖,由△AOC為等腰直角三角形得到AC=$\sqrt{2}$OA=2$\sqrt{2}$,分別在Rt△ACH中和在Rt△ABH中利用含30度的直角三角形三邊的關(guān)系和等腰直角三角形的性質(zhì)計(jì)算出BH和CH,從而得到BC的長(zhǎng).
解答 (1)證明:連結(jié)OC,如圖,
∵∠B=45°,
∴∠AOC=2∠B=90°,
∵CD為切線,
∴OC⊥CD,
∴∠OCD=90°,
∴OA∥CD;
(2)證明:∵∠AOC=90°,OA=OC,
∴△AOC為等腰直角三角形,
∴∠OCA=45°,
∴∠ACD=45°,
∴∠B=∠ACD,
∵OA∥CD,
∴∠BAE=∠D,
∴△ABE∽△DCA;
(3)解:作AH⊥BC于H,如圖,
∵△AOC為等腰直角三角形,
∴AC=$\sqrt{2}$OA=2$\sqrt{2}$,
在Rt△ACH中,∵∠ACH=30°,
∴AH=$\frac{1}{2}$AC=$\sqrt{2}$,CH=$\sqrt{3}$AH=$\sqrt{6}$,
在Rt△ABH中,∵∠B=45°,
∴BH=AH=$\sqrt{2}$,
∴BC=BH+CH=$\sqrt{2}$+$\sqrt{6}$.
點(diǎn)評(píng) 本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.解決(3)小題的關(guān)鍵是作AH⊥BC得到兩個(gè)特殊的直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com