【題目】如圖,已知二次函數(shù)y=x2+bx﹣與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B,以AB為邊在x軸上方作正方形ABCD,點(diǎn)P是x軸上一動(dòng)點(diǎn),連接DP,過點(diǎn)P作DP的垂線與y軸交于點(diǎn)E.
(1)試求出二次函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段AO(點(diǎn)P不與A、O重合)運(yùn)動(dòng)至何處時(shí),線段OE的長有最大值,求出這個(gè)最大值;
(3)是否存在這樣的點(diǎn)P,使△PED是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及此時(shí)△PED與正方形ABCD重疊部分的面積;若不存在,請(qǐng)說明理由.
【答案】(1),B(1,0);(2);(3)點(diǎn)P的坐標(biāo)為(4,0)時(shí),此 時(shí)△PED與正方形ABCD重疊部分的面積為.
【解析】分析:(1)將點(diǎn)A的坐標(biāo)代入二次函數(shù)的解析式求得其解析式,然后求得點(diǎn)B的坐標(biāo)即可求得正方形ABCD的邊長,從而求得點(diǎn)D的縱坐標(biāo).
(2)PA=t,OE=l,利用△DAP∽△POE得到比例式,從而得到有關(guān)兩個(gè)變量的二次函數(shù),求最值即可.
(3)分點(diǎn)P位于y軸左側(cè)和右側(cè)兩種情況討論即可得到重疊部分的面積.
詳解:(1)將點(diǎn)A(﹣3,0)代入y=x2+bx﹣得﹣3b﹣=0,解得b=1,
∴二次函數(shù)的表達(dá)式為y=x2+x﹣,
當(dāng)y=0時(shí), x2+x﹣=0,解得x1=1,x2=﹣3,
∴B(1,0);
(2)設(shè)PA=t(﹣3<t<0),則OP=3﹣t,如圖1,
∵DP⊥PE,
∴∠DPA=∠PEO,
∴△DAP∽△POE,
∴=,即=,
∴OE=﹣t2+t
=﹣(t﹣)2+,
∴當(dāng)t=時(shí),OE有最大值,即P為AO中點(diǎn)時(shí),OE的最大值為;
(3)存在.
當(dāng)點(diǎn)P在y軸左側(cè)時(shí),如圖2,DE交AB于G點(diǎn),
∵PD=PE,∠DPE=90°,
∴△DAP≌△POE,
∴PO=AD=4,
∴PA=1,OE=1,
∵AD∥OE,
∴==4,
∴AG=,
∴S△DAG=4=,
∴P點(diǎn)坐標(biāo)為(﹣4,0),此時(shí)△PED與正方形ABCD重疊部分的面積為;
當(dāng)P點(diǎn)在y軸右側(cè)時(shí),如圖3,DE交AB于G點(diǎn),DP與BC相交于Q,
同理可得△DAP≌△POE,
∴PO=AD=4,
∴PA=7,OE=7,
∵AD∥OE,
∴==,
∴OG=,
同理可得BQ=
∴S四邊形DGBQ=×(+1)×4+×4×=
∴當(dāng)點(diǎn)P的坐標(biāo)為(4,0)時(shí),此時(shí)△PED與正方形ABCD重疊部分的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某跳水隊(duì)為了解運(yùn)動(dòng)員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運(yùn)動(dòng)員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù)為 ,圖①中的值為 ;
(2)求統(tǒng)計(jì)的這組跳水運(yùn)動(dòng)員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為正數(shù),滿足如下兩個(gè)條件:a+b+c=32 ①② 是否存在以 為三邊長的三角形?如果存在,求出三角形的最大內(nèi)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①所示,P是等邊△ABC內(nèi)的一點(diǎn),連接PA、PB、PC,將△BAP繞B點(diǎn)順時(shí)針旋轉(zhuǎn)60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;
(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內(nèi)的一點(diǎn),連接PA、PB、PC,將△BAP繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°得△BCQ,連接PQ.當(dāng)PA、PB、PC滿足什么條件時(shí),∠PQC=90°?請(qǐng)說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)淪中,錯(cuò)誤的有( )
①Rt△ABC中,已知兩邊分別為3和4,則第三邊的長為5;②三角形的三邊分別為a、b、c,若a2+b2=c2,則∠A=90°;③若△ABC中,∠A:∠B:∠C=1:5:6,則這個(gè)三角形是一個(gè)直角三角形;④若(x﹣y)2+M=(x+y)2成立,則M=4xy.
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD中,∠A=60°,點(diǎn)P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動(dòng)到D終止,點(diǎn)Q從A與P同時(shí)出發(fā),沿邊AD勻速運(yùn)動(dòng)到D終止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點(diǎn)Q運(yùn)動(dòng)的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD的邊AD在y軸上,拋物線經(jīng)過點(diǎn)A、點(diǎn)B,與x軸交于點(diǎn)E、點(diǎn)F,且其頂點(diǎn)M在CD上。
(1)請(qǐng)直接寫出下列各點(diǎn)的坐標(biāo):
A ,B ,C ,D ;
(2)若點(diǎn)P是拋物線上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、點(diǎn)B重合),過點(diǎn)P作軸的平行線l與直線AB交于點(diǎn)G,與直線BD交于點(diǎn)H,如圖2。
①當(dāng)線段PH=2GH時(shí),求點(diǎn)P的坐標(biāo);
②當(dāng)點(diǎn)P在直線BD下方時(shí),點(diǎn)K在直線BD上,且滿足△KPH∽△AEF,求△KPH面積的最大值。
圖1 圖2 備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點(diǎn)D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)D的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有8筐楊梅,以每筐5千克為標(biāo)準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),稱后的記錄如下:
回答下列問題:
(1)這8筐楊梅中,最接近5千克的那筐楊梅為多少千克?
(2)以每筐5千克為標(biāo)準(zhǔn),這8筐楊梅總計(jì)超過多少千克或者不足多少千克?
(3)若楊梅每千克售價(jià)25元,則出售這8筐楊梅可賣多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com