【題目】在數(shù)學(xué)興趣小組活動(dòng)中,小明進(jìn)行數(shù)學(xué)探究活動(dòng),將邊長(zhǎng)為2的正方形ABCD與邊長(zhǎng)為2的正方形AEFG按圖1位置放置,ADAE在同一直線上,ABAG在同一直線上.

1)小明發(fā)現(xiàn)DGBE,請(qǐng)你幫他說(shuō)明理由.

2)如圖2,小明將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時(shí),請(qǐng)你幫他求出此時(shí)BE的長(zhǎng).

3)如圖3,小明將正方形ABCD繞點(diǎn)A繼續(xù)逆時(shí)針旋轉(zhuǎn),線段DG與線段BE將相交,交點(diǎn)為H,寫出GHEBHD面積之和的最大值,并簡(jiǎn)要說(shuō)明理由.

【答案】1)理由見(jiàn)解析;(2;(36

【解析】

1)由四邊形ABCD與四邊形AEFG為正方形,利用正方形的性質(zhì)得到兩對(duì)邊相等,且?jiàn)A角相等,利用SAS得到三角形ADG與三角形ABE全等,利用全等三角形對(duì)應(yīng)角相等得∠AGD=∠AEB,如圖1所示,延長(zhǎng)EBDG于點(diǎn)H,利用等角的余角相等得到∠DHE90°,利用垂直的定義即可得DGBE;

2)由四邊形ABCD與四邊形AEFG為正方形,利用正方形的性質(zhì)得到兩對(duì)邊相等,且?jiàn)A角相等,利用SAS得到三角形ADG與三角形ABE全等,利用全等三角形對(duì)應(yīng)邊相等得到DGBE,如圖2,過(guò)點(diǎn)AAMDGDG于點(diǎn)M,∠AMD=∠AMG90°,在直角三角形AMD中,求出AM的長(zhǎng),即為DM的長(zhǎng),根據(jù)勾股定理求出GM的長(zhǎng),進(jìn)而確定出DG的長(zhǎng),即為BE的長(zhǎng);

3GHEBHD面積之和的最大值為6,理由為:對(duì)于EGH,點(diǎn)H在以EG為直徑的圓上,即當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EGH的高最大;對(duì)于BDH,點(diǎn)H在以BD為直徑的圓上,即當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),BDH的高最大,即可確定出面積的最大值.

解:(1)∵四邊形ABCD和四邊形AEFG都為正方形,

ADAB,∠DAG=∠BAE90°,AGAE

∴△ADG≌△ABESAS),

∴∠AGD=∠AEB,

如圖所示,延長(zhǎng)EBDG于點(diǎn)H,

ADG中,

∵∠AGD+ADG90°,

∴∠AEB+ADG90°,

∴∠DHE90°

DGBE;

2)∵四邊形ABCD和四邊形AEFG都為正方形,

ADAB,∠DAB=∠GAE90°AGAE,

∴∠DAB+BAG=∠GAE+BAG,即∠DAG=∠BAE,

∴△ADG≌△ABESAS),

DGBE,

如圖所示,過(guò)點(diǎn)AAMDGDG于點(diǎn)M,∠AMD=∠AMG90°

BD為正方形ABCD的對(duì)角線,

∴∠MDA45°,

RtAMD中,∠MDA45°

cos45°,

AD2,

DMAM

RtAMG中,根據(jù)勾股定理得:GM,

DGDM+GM+,

BEDG+;

3GHEBHD面積之和的最大值為6,理由為:

對(duì)于EGH,點(diǎn)H在以EG為直徑的圓上,

∴當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EGH的高最大;

對(duì)于BDH,點(diǎn)H在以BD為直徑的圓上,

∴當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),BDH的高最大,

GHEBHD面積之和的最大值為2+46

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.

(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),其表達(dá)式是y=ax2+c的形式.請(qǐng)根據(jù)所給的數(shù)據(jù)求出a,c的值.

(2)求支柱MN的長(zhǎng)度.

(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說(shuō)說(shuō)你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在梯形的下底上,且與梯形的上底及兩腰都相切,若,則梯形的周長(zhǎng)等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】垃圾分一分,明天美十分”.環(huán)保部門計(jì)劃訂制一批垃圾分類宣傳海報(bào),海報(bào)版面不小于300平方米,當(dāng)宣傳海報(bào)的版面為300平方米時(shí),價(jià)格為80/平方米.為了支持垃圾分類促進(jìn)環(huán)保,廣告公司給予以下優(yōu)惠:宣傳海報(bào)版面每增加1平方米,每平方米的價(jià)格減少0.2元,但不能低于50/平方米.假設(shè)宣傳海報(bào)的版面增加平方米后,總費(fèi)用為.

1)求關(guān)于的函數(shù)表達(dá)式;

2)訂制宣傳海報(bào)的版面為多少平方米時(shí)總費(fèi)用最高?最高費(fèi)用為多少元?

3)環(huán)保部門希望總費(fèi)用盡可能低,那么應(yīng)該訂制多少平方米的海報(bào)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為2的等邊三角形ABC中,以B為圓心,AB為半徑作,在扇形BAC內(nèi)作⊙OABBC、都相切,則⊙O的周長(zhǎng)等于( 。

A. B. C. D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)M是邊BC上的一點(diǎn)(不與B、C重合),點(diǎn)NCD邊的延長(zhǎng)線上,且滿足∠MAN=90°,聯(lián)結(jié)MN、AC,N與邊AD交于點(diǎn)E.

(1)求證:AM=AN;

(2)如果∠CAD=2NAD,求證:AM2=ACAE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某?萍紝(shí)踐社團(tuán)制作實(shí)踐設(shè)備,小明的操作過(guò)程如下

①小明取出老師提供的圓形細(xì)鐵環(huán),先找到圓心O,再任意找出圓O的一條直徑標(biāo)記為AB(如圖1),測(cè)量出AB8分米;

②將圓環(huán)進(jìn)行翻折使點(diǎn)B落在圓心O的位置,翻折部分的圓環(huán)和未翻折的圓環(huán)產(chǎn)生交點(diǎn)分別標(biāo)記為C、D(如圖2).

③用一細(xì)橡膠棒連接CD兩點(diǎn)(如圖3);

④計(jì)算出橡膠棒CD的長(zhǎng)度.

小明計(jì)算橡膠棒CD的長(zhǎng)度為(  )

A. 4分米B. 2分米C. 2分米D. 3分米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠CAB70°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AB'C'的位置,使得CCAB,則∠CAB'等于( 。

A. 30°B. 25°C. 15°D. 10°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M是正方形ABCDCD上一點(diǎn),連接AM,作DEAM于點(diǎn)E,BFAM于點(diǎn)F,連接BE.

(1)求證:AE=BF;

(2)已知AF=2,四邊形ABED的面積為24,求∠EBF的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案