閱讀下面問題的解決過程:

問題解決:

如圖,已知四邊形ABCD,過點B作一直線(不必寫作法),使其等分四邊形ABCD的面積,并證明.

答案:
解析:

  解:如圖,取對角線AC的中點O,聯(lián)結BO、DOBD 2分

  ∴折線BOD能平分四邊形ABCD的面積 3分

  過點OOEBDCDE 4分

  ∵SBOESDOE(或∵SBDESBDO) 6分

  ∴SBOGSDGE 7分

  ∴SBECS四邊形ABED

  ∴直線BE即為所求直線 8分


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

25、閱讀下面問題的解決過程:
問題:已知△ABC中,P為BC邊上一定點,過點P作一直線,使其等分△ABC的面積.
解決:
情形1:如圖①,若點P恰為BC的中點,作直線AP即可.
情形2:如圖②,若點P不是BC的中點,則取BC的中點D,連接AP,
過點D作DE∥AP交AC于E,作直線PE,直線PE即為所求直線.
問題解決:
如圖③,已知四邊形ABCD,過點B作一直線(不必寫作法),使其等分四邊形ABCD的面積,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年北京市石景山區(qū)初三數(shù)學一模試卷及答案 題型:044

閱讀下面問題的解決過程:

問題解決:

如圖③,已知四邊形ABCD,過點B作一直線(不必寫作法),使其等分四邊形ABCD的面積,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀下面問題的解決過程:
問題:已知△ABC中,P為BC邊上一定點,過點P作一直線,使其等分△ABC的面積.
解決:
情形1:如圖①,若點P恰為BC的中點,作直線AP即可.
情形2:如圖②,若點P不是BC的中點,則取BC的中點D,連接AP,
過點D作DE∥AP交AC于E,作直線PE,直線PE即為所求直線.
問題解決:
如圖③,已知四邊形ABCD,過點B作一直線(不必寫作法),使其等分四邊形ABCD的面積,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年北京市石景山區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

閱讀下面問題的解決過程:
問題:已知△ABC中,P為BC邊上一定點,過點P作一直線,使其等分△ABC的面積.
解決:
情形1:如圖①,若點P恰為BC的中點,作直線AP即可.
情形2:如圖②,若點P不是BC的中點,則取BC的中點D,連接AP,
過點D作DE∥AP交AC于E,作直線PE,直線PE即為所求直線.
問題解決:
如圖③,已知四邊形ABCD,過點B作一直線(不必寫作法),使其等分四邊形ABCD的面積,并證明.

查看答案和解析>>

同步練習冊答案