已知拋物線C1:y=x2-(2m+4)x+m2-10的頂點(diǎn)A到y(tǒng)軸的距離為3,與x軸交于C、D兩點(diǎn).
(1)求頂點(diǎn)A的坐標(biāo);
(2)若點(diǎn)B在拋物線C1上,且S△BCD=6
2
,求點(diǎn)B的坐標(biāo).
分析:(1)把拋物線一般表達(dá)式寫成頂點(diǎn)式,知道頂點(diǎn)A到y(tǒng)軸的距離,進(jìn)而求出m的值,寫出拋物線頂點(diǎn)式表達(dá)式,求出坐標(biāo).(2)由拋物線C1的解析式為y=(x-3)2-18,解得C、D兩點(diǎn)坐標(biāo),求出CD的值,由B點(diǎn)在拋物線C1上,S△BCD=6
2
,求出B點(diǎn)縱坐標(biāo),把縱坐標(biāo)代入拋物線解出橫坐標(biāo).
解答:解:(1)y=x2-(2m+4)x+m2-10
=[x-(m+2)]2+m2-10-(m+2)2
=[x-(m+2)]2-4m-14
∴拋物線頂點(diǎn)A的坐標(biāo)為(m+2,-4m-14)
由于頂點(diǎn)A到y(tǒng)軸的距離為3,
∴|m+2|=3
∴m=1或m=-5
∵拋物線與x軸交于C、D兩點(diǎn),
∴m=-5舍去.
∴m=1,
∴拋物線頂點(diǎn)A的坐標(biāo)為(3,-18).

(2)∵拋物線C1的解析式為y=(x-3)2-18,
∴拋物線C1與x軸交C、D兩點(diǎn)的坐標(biāo)為(3+3
2
,0),(3-3
2
,0),
∴CD=6
2

∵B點(diǎn)在拋物線C1上,S△BCD=6
2
,設(shè)B(xB,yB),則yB=±2,
把yB=2代入到拋物線C1的解析式為y=(x-3)2-18,
解得xB=2
5
+3
xB=-2
5
+3
,
把yB=-2代入到拋物線C1的解析式為y=(x-3)2-18,
解得xB=-1或xB=7,
∴B點(diǎn)坐標(biāo)為(2
5
+3,2),(-2
5
+3
,2),(-1,-2),(7,-2)
點(diǎn)評(píng):本題是二次函數(shù)的綜合應(yīng)用題,考查拋物線的頂點(diǎn)坐標(biāo)公式,會(huì)求解拋物線上的點(diǎn)的坐標(biāo).此題不是很難,但做題時(shí)也要小心仔細(xì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C1與坐標(biāo)軸的交點(diǎn)依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點(diǎn)對(duì)稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N,四邊形MDNA的面積為S.若點(diǎn)A,點(diǎn)D同時(shí)以每秒1個(gè)單位的速度沿水平方向分別向右、向左運(yùn)動(dòng);與此同時(shí),點(diǎn)M,點(diǎn)N同時(shí)以每秒2個(gè)單位的速度沿堅(jiān)直方向分別向下、向上運(yùn)動(dòng),直到點(diǎn)A與點(diǎn)D重合為止.求出四邊形MDNA的面積S與運(yùn)動(dòng)時(shí)間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時(shí),四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運(yùn)動(dòng)過程中,四邊形MDNA能否形成矩形?若能,求出此時(shí)t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=-x2+2mx+1(m為常數(shù),且m≠0)的頂點(diǎn)為A,與y軸交于點(diǎn)C;拋物線C2與拋物線C1關(guān)于y軸對(duì)稱,其頂點(diǎn)為B.若點(diǎn)P是拋物線C1上的點(diǎn),使得以A、B、C、P為頂點(diǎn)的四邊形為菱形,則m為( 。
A、±
3
B、
3
C、±
2
D、
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y=a(x-2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)A的橫坐標(biāo)是-1.
(1)求P點(diǎn)坐標(biāo)及a的值;
(2)如圖(1),拋物線C2與拋物線C1關(guān)于x軸對(duì)稱,將拋物線C2向左平移,平移后的拋物線記為C3,C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)A成中心對(duì)稱時(shí),求C3的解析式y(tǒng)=a(x-h)2+k;
(3)如圖(2),點(diǎn)Q是x軸負(fù)半軸上一動(dòng)點(diǎn),將拋物線C1繞點(diǎn)Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形時(shí),求頂點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•房山區(qū)一模)已知拋物線C1:y=ax2+4ax+4a-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)B的橫坐標(biāo)是1.
(1)求拋物線的解析式和頂點(diǎn)P的坐標(biāo);
(2)將拋物線沿x軸翻折,再向右平移,平移后的拋物線C2的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)B成中心對(duì)稱時(shí),求平移后的拋物線C2的解析式;
(3)直線y=-
35
x+m
與拋物線C1、C2的對(duì)稱軸分別交于點(diǎn)E、F,設(shè)由點(diǎn)E、P、F、M構(gòu)成的四邊形的面積為s,試用含m的代數(shù)式表示s.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=-x2+2mx+1(m為常數(shù),且m≠0)的頂點(diǎn)為A,與y軸交于點(diǎn)C;拋物線C2與拋物線C1關(guān)于y軸對(duì)稱,其頂點(diǎn)為B.若點(diǎn)P是拋物線C1上的點(diǎn),使得以A、B、C、P為頂點(diǎn)的四邊形為菱形,則m的值為
±
3
±
3

查看答案和解析>>

同步練習(xí)冊(cè)答案