【題目】如圖5,在A島周圍25海里水域有暗礁,一輪船由西向東航行到O處時(shí),發(fā)現(xiàn)A島在北偏東60°方向,輪船繼續(xù)前行20海里到達(dá)B處發(fā)現(xiàn)A島在北偏東45°方向,該船若不改變航向繼續(xù)前進(jìn),有無(wú)觸礁的危險(xiǎn)? (參考數(shù)據(jù):)
【答案】解:根據(jù)題意,有∠AOC=30°,∠ABC=45°, ∠ACB=90°
所以BC=AC,………………………………………….3分
于是在Rt△AOC中,由tan30°=, …………….…...4分
得, …………………………………………. 6分
解得AC=(海里)……………………….….. 8分
因?yàn)?/span>…………………….…..…... 9分
所以輪船不會(huì)觸礁. ………………………………….….. 10分
【解析】
試題要得出有無(wú)觸礁的危險(xiǎn)需求出輪船在航行過(guò)程中離點(diǎn)A的最近距離,然后與暗礁區(qū)的半徑進(jìn)行比較,若大于則無(wú)觸礁的危險(xiǎn),若小于則有觸礁的危險(xiǎn).
試題解析:作AC⊥OB,交BO于點(diǎn)C.
根據(jù)題意,有∠AOC=30°,∠ABC=45°,∠ACB=90°
所以BC=AC.
在Rt△AOC中,由tan30°=,
得 ,
解得AC=≈27.32(海里)
因?yàn)?7.32(海里)>25(海里)
所以輪船不會(huì)觸礁.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一副撲克牌中的三張黑桃牌(它們的正面數(shù)字分別為3、4、5)洗勻后正面朝下放在桌面上.小王和小李玩摸牌游戲,游戲規(guī)則如下:先由小王隨機(jī)抽取一張牌,記下牌面數(shù)字后放回,洗勻后正面朝下,再由小李隨機(jī)抽取一張牌,記下牌面數(shù)字.當(dāng)兩張牌的牌面數(shù)字相同時(shí),小王贏;當(dāng)兩張牌的牌面數(shù)字不同時(shí),小李贏.現(xiàn)請(qǐng)你分析游戲規(guī)則對(duì)雙方是否公平,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一家苗圃計(jì)劃植桃樹(shù)和柏樹(shù),根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植桃樹(shù)的利潤(rùn)(萬(wàn)元)與投資成本x(萬(wàn)元)滿足如圖①所示的二次函數(shù);種植柏樹(shù)的利潤(rùn)(萬(wàn)元)與投資成本x(萬(wàn)元)滿足如圖②所示的正比例函數(shù)=kx.
(1)分別求出利潤(rùn)(萬(wàn)元)和利潤(rùn)(萬(wàn)元)關(guān)于投資成本x(萬(wàn)元)的函數(shù)關(guān)系式;
(2)如果這家苗圃以10萬(wàn)元資金投入種植桃樹(shù)和柏樹(shù),桃樹(shù)的投資成本不低于2萬(wàn)元且不高于8萬(wàn)元,苗圃至少獲得多少利潤(rùn)?最多能獲得多少利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù) y=ax+bx+c(a≠0)的圖象如圖所示,A(﹣ 1,3)是拋物線的頂點(diǎn),則以下結(jié)論中正確的是( )
A. a<0,b>0,c>0
B. 2a+b=0
C. 當(dāng) x<0 時(shí),y 隨 x 的增大而減小
D. ax2+bx+c﹣3≤0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,點(diǎn)E為AB邊上的一點(diǎn),點(diǎn)F為對(duì)角線BD上的一點(diǎn),且EF⊥AB.
(1)若四邊形ABCD為正方形.
①如圖①,請(qǐng)直接寫(xiě)出AE與DF的數(shù)量關(guān)系______________;
②將△EBF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)到圖②所示的位置,連接AE,DF,猜想AE與DF的數(shù)量關(guān)系并說(shuō)明理由;
(2)如圖③,若四邊形ABCD為矩形,BC=mAB,其他條件都不變,將△EBF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)得到△E′BF′,連接AE′,DF′,請(qǐng)?jiān)趫D③中畫(huà)出草圖,并求出AE′與DF′的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為預(yù)防疾病,某校對(duì)教室進(jìn)行“藥熏消毒”.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量(mg)與燃燒時(shí)間(分鐘)成正比例;燃燒后, 與成反比例(如圖所示).現(xiàn)測(cè)得藥物10分鐘燃完,此時(shí)教室內(nèi)每立方米空氣含藥量為8mg.據(jù)以上信息解答下列問(wèn)題:
(1)求藥物燃燒時(shí)與的函數(shù)關(guān)系式.(2)求藥物燃燒后與的函數(shù)關(guān)系式.
(3)當(dāng)每立方米空氣中含藥量低于1.6mg時(shí),對(duì)人體方能無(wú)毒害作用,那么從消毒開(kāi)始,經(jīng)多長(zhǎng)時(shí)間學(xué)生才可以回教室?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB是半圓O的直徑,弦CD∥AB,動(dòng)點(diǎn)P、Q分別在線段OC、CD上,且DQ=OP,AP的延長(zhǎng)線與射線OQ相交于點(diǎn)E、與弦CD相交于點(diǎn)F(點(diǎn)F與點(diǎn)C、D不重合),AB=20,cos ∠AOC=.設(shè)OP=x,△CPF的面積為y.
(1)求證:AP=OQ;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(3)當(dāng)△OPE是直角三角形時(shí),求線段OP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】轉(zhuǎn)轉(zhuǎn)盤和摸球是等可能概率下的經(jīng)典模型.
(1)在一個(gè)不透明的口袋中,放入除顏色外其余都相同的4個(gè)小球,其中1個(gè)白球,3個(gè)黑球攪勻后,隨機(jī)同時(shí)摸出2個(gè)球,求摸出兩個(gè)都是黑球的概率(要求釆用樹(shù)狀圖或列表法求解);
(2)如圖,轉(zhuǎn)盤的白色扇形和黑色扇形的圓心角分別為120°和240°.讓轉(zhuǎn)盤自由轉(zhuǎn)動(dòng)2次,求指針2次都落在黑色區(qū)域的概率(要求采用樹(shù)狀圖或列表法求解).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com