【題目】如圖,△ABC的頂點坐標分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應(yīng)點為D,拋物線y=ax2﹣10ax+c經(jīng)過點C,頂點M在直線BC上.
(1)證明四邊形ABCD是菱形,并求點D的坐標;
(2)求拋物線的對稱軸和函數(shù)表達式;
(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標;若不存在,請說明理由.
【答案】解:(1)證明:∵A(﹣6,0),B(4,0),C(0,8),
∴AB=6+4=10,。∴AB=AC。
由翻折可得,AB=BD,AC=CD。∴AB=BD=CD=AC。∴四邊形ABCD是菱形。
∴CD∥AB。
∵C(0,8),∴點D的坐標是(10,8)。
(2)∵y=ax2﹣10ax+c,∴對稱軸為直線。
設(shè)M的坐標為(5,n),直線BC的解析式為y=kx+b,
∴,解得。
∴直線BC的解析式為y=﹣2x+8。
∵點M在直線y=﹣2x+8上,∴n=﹣2×5+8=﹣2。
∴M(5,,-2).
又∵拋物線y=ax2﹣10ax+c經(jīng)過點C和M,
∴,解得。
∴拋物線的函數(shù)表達式為。
(3)存在。點P的坐標為P1(),P2(﹣5,38)
【解析】
試題分析:(1)根據(jù)勾股定理,翻折的性質(zhì)可得AB=BD=CD=AC,根據(jù)菱形的判定和性質(zhì)可得點D的坐標。
(2)根據(jù)對稱軸公式可得拋物線的對稱軸,設(shè)M的坐標為(5,n),直線BC的解析式為y=kx+b,根據(jù)待定系數(shù)法可求M的坐標,再根據(jù)待定系數(shù)法求出拋物線的函數(shù)表達式。
(3)分點P在CD的上面下方和點P在CD的上方兩種情況,根據(jù)等底等高的三角形面積相等可求點P的坐標:
設(shè)P,
當點P在CD的上面下方,根據(jù)菱形的性質(zhì),知點P是AD與拋物線的交點,由A,D的坐標可由待定系數(shù)法求出AD的函數(shù)表達式: ,二者聯(lián)立可得P1();
當點P在CD的上面上方,易知點P是∠D的外角平分線與拋物線的交點,此時,∠D的外角平分線與直線AD垂直,由相似可知∠D的外角平分線PD的斜率等于-2,可設(shè)其為,將D(10,8)代入可得PD的函數(shù)表達式: ,與拋物線聯(lián)立可得P2(﹣5,38)。
科目:初中數(shù)學 來源: 題型:
【題目】△ABC與△A′B′C′在平面直角坐標系中的位置如圖所示.
(1)分別寫出下列各點的坐標:A′________;B′________;C′________;
(2)說明△A′B′C′由△ABC經(jīng)過怎樣的平移得到;
(3)若點P(a,b)是△ABC內(nèi)部一點,則平移后△A′B′C′內(nèi)的對應(yīng)點P′的坐標為________;
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線的函數(shù)表達式為,與軸交點為,與軸交點為.
(1)求兩點的坐標;
(2)若點為線段上的一個動點,為坐標原點,是否存在點,使的值最?若存在,求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小東根據(jù)學習一次函數(shù)的經(jīng)驗,對函數(shù)y=|2x﹣1|的圖象和性質(zhì)進行了探究.下面是小東的探究過程,請補充完成:
(1)函數(shù)y=|2x﹣1|的自變量x的取值范圍是 ;
(2)已知:
①當x=時,y=|2x﹣1|=0;
②當x>時,y=|2x﹣1|=2x﹣1
③當x<時,y=|2x﹣1|=1﹣2x;
顯然,②和③均為某個一次函數(shù)的一部分.
(3)由(2)的分析,取5個點可畫出此函數(shù)的圖象,請你幫小東確定下表中第5個點的坐標(m,n),其中m= ;n= ;:
x | … | ﹣2 | 0 |
| 1 | m | … |
y | … | 5 | 1 | 0 | 1 | n | … |
(4)在平面直角坐標系xOy中,作出函數(shù)y=|2x﹣1|的圖象;
(5)根據(jù)函數(shù)的圖象,寫出函數(shù)y=|2x﹣1|的一條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為18,cosB=,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,射線軸,直線交線段于點,交軸于點,是射線上一點.若存在點,使得恰為等腰直角三角形,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩座城市之間有一條高速公路,甲、乙兩輛汽車同時分別從這條路兩端的入口處駛?cè),并始終在高速公路上正常行駛.甲車駛往B城,乙車駛往A城,甲車在行駛過程中速度始終不變.甲車距B城高速公路入口處的距離y(千米)與行駛時間x(時)之間的關(guān)系如圖.
(1)求y關(guān)于x的表達式;
(2)已知乙車以60千米/時的速度勻速行駛,設(shè)行駛過程中,兩車相距的路程為s(千米).請直接寫出s關(guān)于x的表達式;
(3)當乙車按(2)中的狀態(tài)行駛與甲車相遇后,速度隨即改為a(千米/時)并保持勻速行駛,結(jié)果比甲車晚40分鐘到達終點,求乙車變化后的速度a.在下圖中畫出乙車離開B城高速公路入口處的距離y(千米)與行駛時間x(時)之間的函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.利用正方形網(wǎng)絡(luò)可以畫出長度為無理數(shù)的線段,如圖1中.請參考此方法按下列要求作圖:
(1)在圖1中以格點為頂點畫一個面積為17的正方形,并標出字母;
(2)在圖2中以格點為頂點畫一個三角形,使,,,并標出字母;
(3)猜想是何種特殊三角形.并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司有A、B兩種型號的客車共11輛,它們的載客量(不含司機)、日租金、車輛數(shù)如下表所示,已知這11輛客車滿載時可搭載乘客350人.
A型客車 | B型客車 | |
載客量(人/輛) | 40 | 25 |
日租金(元/輛) | 320 | 200 |
車輛數(shù)(輛) | a | b |
(1)求a、b的值;
(2)某校七年級師生周日集體參加社會實踐,計劃租用A、B兩種型號的客車共6輛,且租車總費用不超過1700元.
①最多能租用A型客車多少輛?
②若七年級師生共195人,寫出所有的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com