【題目】如圖,在△ABC中,AE為邊BC上的高,點(diǎn)D為邊BC上的一點(diǎn),連接AD.
(1)當(dāng)AD為邊BC上的中線時(shí).若AE=4,△ABC的面積為24,求CD的長(zhǎng);
(2)當(dāng)AD為∠BAC的角平分線時(shí).
①若∠C =65°,∠B =35°,求∠DAE的度數(shù);
②若∠C-∠B =20°,則∠DAE = °.
【答案】(1)6 ;(2)①15°;②10.
【解析】
(1)利用三角形的面積公式求出BC即可解決問(wèn)題;
(2)①根據(jù)三角形內(nèi)角和求出∠BAC和∠CAE的度數(shù),然后根據(jù)角平分線的定義求得∠CAD的度數(shù),從而求解;
②設(shè)∠C=x°,則∠B=(x+20)°,然后根據(jù)三角形內(nèi)角和用含x的式子表示出∠BAC和∠CAE的度數(shù),然后根據(jù)角平分線的定義求得∠CAD的度數(shù),從而求解.
解:(1)由題意可知:AE⊥BC,AE=4,△ABC的面積為24,
∴×BC×AE=24,
∴×BC×4=24,
∴BC=12,
∵AD是△ABC的中線,
∴CD=BC=6,
(2)①在△ABC中,∠BAC=180°-∠C-∠B =80°,
在△AEC中,∵AE⊥BC
∴∠CAE=180°-90°-∠C=25°
∵AD為∠BAC的角平分線
∴∠CAD=
∴∠DAE的度數(shù)為∠CAD -∠CAE =15°
②設(shè)∠C=x°,則∠B=(x+20)°
在△ABC中,∠BAC=180°-∠C-∠B =(160-2x)°,
在△AEC中,∵AE⊥BC
∴∠CAE=180°-90°-∠C=(90-x)°
∵AD為∠BAC的角平分線
∴∠CAD=
∴∠DAE的度數(shù)為∠CAE- ∠CAD =10°
故答案為:10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織八年級(jí)師生共420人參觀紀(jì)念館,學(xué)校聯(lián)系租車(chē)公司提供車(chē)輛,該公司現(xiàn)有A,B兩種座位數(shù)不同的車(chē)型,如果租用A種車(chē)3輛,B種車(chē)5輛,則空余15個(gè)座位:如果租用A種車(chē)5輛,B種車(chē)3輛,則有15個(gè)人沒(méi)座位
(1)求該公司A,B兩種車(chē)型各有多少個(gè)座位?
(2)若A種車(chē)型的日租金為260元輛,B種車(chē)型的日租金為350元輛,怎樣租車(chē)能使得座位恰好坐滿(mǎn)且租金最少?最少租金是多少?(請(qǐng)直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求兩個(gè)正整數(shù)的最大公約數(shù)是常見(jiàn)的數(shù)學(xué)問(wèn)題,中國(guó)古代數(shù)學(xué)專(zhuān)著《九章算術(shù)》中便記載了求兩個(gè)正整數(shù)最大公約數(shù)的一種方法﹣﹣更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少成多,更相減損,求其等也.以等數(shù)約之”,意思是說(shuō),要求兩個(gè)正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類(lèi)推,當(dāng)減數(shù)與差相等時(shí),此時(shí)的差(或減數(shù))即為這兩個(gè)正整數(shù)的最大公約數(shù).
例如:求91與56的最大公約數(shù)
解:
請(qǐng)用以上方法解決下列問(wèn)題:
(1)求108與45的最大公約數(shù);
(2)求三個(gè)數(shù)78、104、143的最大公約數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,點(diǎn)E、F分別是AB、BC邊的中點(diǎn),連接AF、CE交于點(diǎn)M,連接BM并延長(zhǎng)交CD于點(diǎn)N,連接DE交AF于點(diǎn)P,則結(jié)論:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE= :3;⑤S△EPM= S梯形ABCD , 正確的個(gè)數(shù)有( )
A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)先閱讀下列文字與例題,再回答后面的問(wèn)題:
當(dāng)因式分解中,無(wú)法直接運(yùn)用提取公因式和乘法公式時(shí),我們往往可以嘗試一個(gè)多項(xiàng)式分組后,再運(yùn)用提取公因式或乘法公式繼續(xù)分解的方法是分組分解法.
例如:
(1)
=
=
=
(2)
=
=
=
(1)根據(jù)上面的知識(shí),我們可以將下列多項(xiàng)式進(jìn)行因式分解:
(_____________)-(____________)=(_____________)-(____________)= (_____________)(_____________);
=(_____________)+(____________)=(_____________)+(____________)= (_____________)(______________).
(2)分解下列因式:
①;
②.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B,C三名大學(xué)生競(jìng)選系學(xué)生會(huì)主席,他們的筆試成績(jī)和口試成績(jī)(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計(jì),如表和圖一:
A | B | C | |
筆試 | 85 | 95 | 90 |
口試 | 80 | 85 |
(1)請(qǐng)將表一和圖一中的空缺部分補(bǔ)充完整.
(2)競(jìng)選的最后一個(gè)程序是由本系的300名學(xué)生進(jìn)行投票,三位候選人的得票情況如圖二(沒(méi)有棄權(quán)票,每名學(xué)生只能推薦一個(gè)),請(qǐng)計(jì)算每人的得票數(shù).
(3)若每票計(jì)1分,系里將筆試、口試、得票三項(xiàng)測(cè)試得分按4:3:3的比例確定個(gè)人成績(jī),請(qǐng)計(jì)算三位候選人的最后成績(jī),并根據(jù)成績(jī)判斷誰(shuí)能當(dāng)選.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某監(jiān)測(cè)點(diǎn)B處望見(jiàn)一艘正在作業(yè)的漁船在南偏西15°方向的A處,若漁船沿北偏西75°方向以40海里/小時(shí)的速度航行,航行半小時(shí)后到達(dá)C處,在C處觀測(cè)到B在C的北偏東60°方向上,則B、C之間的距離為( )
A.20海里
B.10 海里
C.20 海里
D.30海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某批發(fā)市場(chǎng)對(duì)外批發(fā)某品脾的玩具,其價(jià)格與件數(shù)關(guān)系如圖所示,請(qǐng)你根據(jù)圖中描述判斷:下列說(shuō)法中錯(cuò)誤的是( )
A. 當(dāng)件數(shù)不超過(guò)30件時(shí),每件價(jià)格為60元
B. 當(dāng)件數(shù)在30到60之間時(shí),每件價(jià)格隨件數(shù)增加而減少
C. 當(dāng)件數(shù)為50件時(shí),每件價(jià)格為55元
D. 當(dāng)件數(shù)不少于60件時(shí),每件價(jià)格都是45元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解,補(bǔ)全證明過(guò)程及推理依據(jù).
已知:如圖,點(diǎn)E在直線DF上,點(diǎn)B在直線AC上,∠1=∠2,∠3=∠4.
求證∠A=∠F
證明:∵∠1=∠2(已知)
∠2=∠DGF( )
∴∠1=∠DGF(等量代換)
∴ ∥ ( )
∴∠3+∠ =180°( )
又∵∠3=∠4(已知)
∴∠4+∠C=180°(等量代換)
∴ ∥ ( )
∴∠A=∠F( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com