3.對(duì)于實(shí)數(shù)x,若方程x2-3x-3=(x2-x-2)0,則x的值為4.

分析 直接利用零指數(shù)冪的性質(zhì)和因式分解法解一元二次方程的方法得出答案.

解答 解:∵方程x2-3x-3=(x2-x-2)0,
∴x2-3x-3=1,且x2-x-2≠0,
解得:x1=-1,x2=4,x3≠-1,x4≠2,
則x的值為:4.
故答案為:4.

點(diǎn)評(píng) 此題主要考查了零指數(shù)冪的性質(zhì)以及一元二次方程的解法,正確解方程是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列圖形中,是中心對(duì)稱圖形但不是軸對(duì)稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若$\left\{\begin{array}{l}{x+y=16}\\{\sqrt{y+5}-\sqrt{x-1}=2}\end{array}\right.$,則(y-2)1-x的值為(  )
A.729B.$\frac{1}{729}$C.6561D.$\frac{1}{6561}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.使得函數(shù)值為零的自變量的值稱為函數(shù)的零點(diǎn),例如,對(duì)于函數(shù)y=x-1,令y=0,可得x=1.我們就說(shuō)1是函數(shù)y=x-1的零點(diǎn).已知函數(shù)y=x2-2mx-2(m+3)(m為常數(shù)).
(1)當(dāng)m=0時(shí),求該函數(shù)的零點(diǎn);
(2)證明:無(wú)論m取何值,該函數(shù)總有兩個(gè)零點(diǎn);
(3)設(shè)函數(shù)的兩個(gè)零點(diǎn)分別為x1和x2,且$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=-$\frac{1}{4}$,求此時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,矩形AEFG的頂點(diǎn)E,G分別在正方形ABCD的AB,AD邊上,連接B,交EF于點(diǎn)M,交FG于點(diǎn)N,設(shè)AE=a,AG=b,AB=c(b<a<c).
(1)求證:$\frac{BN}{DM}$=$\frac{a}$;
(2)求△AMN的面積(用a,b,c的代數(shù)式表示);
(3)當(dāng)∠MAN=45°時(shí),求證:c2=2ab.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知拋物線y=ax2+bx+c與直線y=mx+n相交于兩點(diǎn),這兩點(diǎn)的坐標(biāo)分別是(0,-$\frac{1}{2}$)和(m-b,m2-mb+n),其中a、b、c、m、n為常數(shù),且a、m不為0.
(Ⅰ)求c和n的值;
(Ⅱ)判斷拋物線y=ax2+bx+c與x軸的公共點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(Ⅲ)當(dāng)-1≤x≤1時(shí),設(shè)拋物線y=ax2+bx+c上與x軸距離最大的點(diǎn)為P(x0,y0),(y0>0),求y0的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,對(duì)于P(a,b)和點(diǎn)Q(a,b′),給出如下定義:若b′=$\left\{\begin{array}{l}{b(a≥1)}\\{-b(a<1)}\end{array}\right.$,則稱點(diǎn)Q為點(diǎn)P的限變點(diǎn).例如:點(diǎn)(2,3)的限變點(diǎn)的坐標(biāo)是(2,3),點(diǎn)(-2,5)的限變點(diǎn)的坐標(biāo)是(-2,-5).
(1)點(diǎn)($\sqrt{3}$,1)的限變點(diǎn)的坐標(biāo)是($\sqrt{3}$,1);
(2)判斷點(diǎn)A(-2,-1)、B(-1,2)中,哪一個(gè)點(diǎn)是函數(shù)y=$\frac{2}{x}$圖象上某一個(gè)點(diǎn)的限變點(diǎn)?并說(shuō)明理由;
(3)若點(diǎn)P(a,b)在函數(shù)y=-x+3的圖象上,其限變點(diǎn)Q(a,b′)的縱坐標(biāo)的取值范圍是-6≤b′≤-3,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,在?ABCD中,連接BD,AD⊥BD,AB=4cm,BD=3cm,則?ABCD的面積為3$\sqrt{7}$cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.化分式方程$\frac{1}{5{x}^{2}-5}$-$\frac{3}{{x}^{2}-1}$-$\frac{4}{1-x}$=0為整式方程時(shí),方程兩邊同乘( 。
A.(5x2-5)(x2-1)(1-x)B.5(x2-1)(1-x)C.5(x2-1)(x+1)D.5(x+1)(x-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案